Combined use of congestion control and frame discarding for Internet video streaming

buir.advisorAkar, Nail
dc.contributor.authorYücesan, Ongun
dc.date.accessioned2016-07-01T10:56:38Z
dc.date.available2016-07-01T10:56:38Z
dc.date.issued2003
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionCataloged from PDF version of article.en_US
dc.description.abstractIncreasing demand for video applications over the Internet and the inherent uncooperative behavior of the User Datagram Protocol (UDP) used currently as the transport protocol of choice for video networking applications, is known to be leading to congestion collapse of the Internet. The congestion collapse can be prevented by using mechanisms in networks that penalize uncooperative flows like UDP or employing end-to-end congestion control. Since today’s vision for the Internet architecture is based on moving the complexity towards the edges of the networks, employing end-to-end congestion control for video applications has recently been a hot area of research. One alternative is to use a Transmission Control Protocol (TCP)-friendly end-to-end congestion control scheme. Such schemes, similar to TCP, probe the network for estimating the bandwidth available to the session they belong to. The average bandwidth available to a session using a TCP-friendly congestion control scheme has to be the same as that of a session using TCP. Some TCP-friendly congestion control schemes are highly responsive as TCP itself leading to undesired oscillations in the estimated bandwidth and thus fluctuating quality. Slowly responsive TCP-friendly congestion control schemes to prevent this type of behavior have recently been proposed in the literature. The main goal of this thesis is to develop an architecture for video streaming in IP networks using slowly responding TCP-friendly end-to-end congestion control. In particular, we use Binomial Congestion Control (BCC). In this architecture, the video streaming device intelligently discards some of the video packets of lesser priority before injecting them in the network in order to match the incoming video rate to the estimated bandwidth using BCC and to ensure a high throughput for those video packets with higher priority. We iiidemonstrate the efficacy of this architecture using simulations in a variety of scenarios.en_US
dc.description.degreeM.S.en_US
dc.description.statementofresponsibilityYücesan, Ongunen_US
dc.format.extentxii, 80 leaves, illustrations, graphs, 29 cmen_US
dc.identifier.itemidBILKUTUPB069803
dc.identifier.urihttp://hdl.handle.net/11693/29259
dc.language.isoEnglishen_US
dc.publisherBilkent Universityen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCongestion Controlen_US
dc.subjectTransmission Control Protocolen_US
dc.subjectTCP-friendly congestion controlen_US
dc.subjectvideo streamingen_US
dc.subjecttemporal scalabilityen_US
dc.subject.lccTK5105.585 .Y83 2003en_US
dc.subject.lcshTCP/IP (Computer network protocol).en_US
dc.titleCombined use of congestion control and frame discarding for Internet video streamingen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0002257.pdf
Size:
1.58 MB
Format:
Adobe Portable Document Format
Description:
Full printable version