ShareTrace: an iterative message passing algorithm for efficient and effective disease risk assessment on an interaction graph
buir.contributor.author | Ayday, Erman | |
dc.citation.epage | 6 | en_US |
dc.citation.spage | 1 | en_US |
dc.contributor.author | Ayday, Erman | |
dc.contributor.author | Yoo, Y. | |
dc.contributor.author | Halimi, A. | |
dc.coverage.spatial | New York, NY, United States | en_US |
dc.date.accessioned | 2022-02-09T10:00:28Z | |
dc.date.available | 2022-02-09T10:00:28Z | |
dc.date.issued | 2021-08-01 | |
dc.department | Department of Computer Engineering | en_US |
dc.description | Conference Name: BCB '21: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics | en_US |
dc.description | Date of Conference: 1- 4 August 2021 | en_US |
dc.description.abstract | We propose a novel privacy-preserving COVID-19 risk assessment algorithm that can make a fundamental contribution to the development of the next generation resilient public health and health care systems. The proposed algorithm, ShareTrace, uses a hyperlocal interaction graph to capture direct and indirect physical interactions among users. Combining user-reported symptoms that are propagated through the hyperlocal interaction graph via a novel message passing algorithm, ShareTrace is able to pick up early warning signals based on the combination of interactions with others and symptoms. The proposed algorithm is inspired by the belief propagation algorithm and iterative decoding of low-density parity-check codes over factor graphs. Our evaluation on synthetic data shows the efficiency and efficacy of the proposed solution. | en_US |
dc.description.provenance | Submitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-02-09T10:00:28Z No. of bitstreams: 1 ShareTrace_an_iterative_message_passing_algorithm_for_efficient_and_effective_disease_risk_assessment_on_an_interaction_graph.pdf: 1213839 bytes, checksum: c6db2fe925f49473766edf61a7e518d4 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2022-02-09T10:00:28Z (GMT). No. of bitstreams: 1 ShareTrace_an_iterative_message_passing_algorithm_for_efficient_and_effective_disease_risk_assessment_on_an_interaction_graph.pdf: 1213839 bytes, checksum: c6db2fe925f49473766edf61a7e518d4 (MD5) Previous issue date: 2021-08-01 | en |
dc.identifier.isbn | 978-145038450-6 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/77160 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Association for Computing Machinery | en_US |
dc.relation.isversionof | 10.1145/3459930.3469553 | en_US |
dc.source.title | BCB '21: Proceedings of the 12th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | Digital contact tracing | en_US |
dc.subject | Belief-propagation algorithm | en_US |
dc.subject | Privacy | en_US |
dc.subject | Hyperlocal interaction graph | en_US |
dc.title | ShareTrace: an iterative message passing algorithm for efficient and effective disease risk assessment on an interaction graph | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- ShareTrace_an_iterative_message_passing_algorithm_for_efficient_and_effective_disease_risk_assessment_on_an_interaction_graph.pdf
- Size:
- 1.16 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.69 KB
- Format:
- Item-specific license agreed upon to submission
- Description: