Partial differential equations possessing the Painleve property
buir.advisor | Muğan, Uğurhan | |
dc.contributor.author | Jrad, Fahd | |
dc.date.accessioned | 2016-01-08T20:13:40Z | |
dc.date.available | 2016-01-08T20:13:40Z | |
dc.date.issued | 1996 | |
dc.description | Ankara : Department of Mathematics and Institute of Engineering and Sciences, Bilkent University, 1996. | en_US |
dc.description | Thesis (Master's) -- Bilkent University, 1996. | en_US |
dc.description | Includes bibliographical references leaves 20. | en_US |
dc.description.abstract | 111 this tli(\sis, a|)|)lying llie l^viiilovc tost (l(ivolo|)('.(l by VV(hss, 'labor ainl t biriK'vale (VV1X9) investigatc'd the Pa.inleve property of Ibirgers’ ty|)e of ('(piarioiis, KdV type of equations and the KP extc'iisions of th(' KdV i-yi)(' of ('i|na,tions. VVe showed that there a.rc^ iiiiinitely many e(|nations of t,h('S(' t-ypc's poss('ssing tlu^ Painleve propcn'ty and tims we elassiíi(MÍ tlnmi witJi res])ect to Pa.illlevé property. | en_US |
dc.description.provenance | Made available in DSpace on 2016-01-08T20:13:40Z (GMT). No. of bitstreams: 1 1.pdf: 78510 bytes, checksum: d85492f20c2362aa2bcf4aad49380397 (MD5) | en |
dc.description.statementofresponsibility | Jrad, Fahd | en_US |
dc.format.extent | vi, 20 leaves | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/17818 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Painleve property | en_US |
dc.subject | Singular manifold | en_US |
dc.subject | resonances | en_US |
dc.subject | compatabilitv conditions | en_US |
dc.subject.lcc | QC20.7.D5 J73 1996 | en_US |
dc.subject.lcsh | Painleve equations. | en_US |
dc.subject.lcsh | Mathematical physics--Asymptotic theory. | en_US |
dc.title | Partial differential equations possessing the Painleve property | en_US |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- B035257.pdf
- Size:
- 690.02 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version