On a problem of H.Shapiro

dc.citation.epage232en_US
dc.citation.issueNumber2en_US
dc.citation.spage218en_US
dc.citation.volumeNumber126en_US
dc.contributor.authorOstrovskii, I.en_US
dc.contributor.authorUlanovskii, A.en_US
dc.date.accessioned2015-07-28T11:57:18Z
dc.date.available2015-07-28T11:57:18Z
dc.date.issued2004-02en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet μ be a real measure on the line such that its Poisson integral M(z) converges and satisfies M(x+ iy) ≤ Ae-cyα, y → + ∞, for some constants A, c > 0 and 0 < α ≤ 1. We show that for 1/2 < α ≤ 1 the measure μ must have many sign changes on both positive and negative rays. For 0 < α ≤ 1/2 this is true for at least one of the rays, and not always true for both rays. Asymptotical bounds for the number of sign changes are given which are sharp in some sense. © 2003 Elsevier Inc. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T11:57:18Z (GMT). No. of bitstreams: 1 10.1016-j.jat.2003.12.003.pdf: 265957 bytes, checksum: 5ca55300780f16c21db719cd4c7e9f71 (MD5)en
dc.identifier.doi10.1016/j.jat.2003.12.003en_US
dc.identifier.issn0021-9045
dc.identifier.urihttp://hdl.handle.net/11693/11277
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jat.2003.12.003en_US
dc.source.titleJournal of Approximation Theoryen_US
dc.subjectOscillationsen_US
dc.subjectPoisson Integralen_US
dc.subjectSign Changesen_US
dc.titleOn a problem of H.Shapiroen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.jat.2003.12.003.pdf
Size:
259.72 KB
Format:
Adobe Portable Document Format