Akut koroner sendromların otomatik ST/T sınıflandırıcısı ile erken tanısı
buir.contributor.author | Arıkan, Orhan | |
buir.contributor.orcid | Arıkan, Orhan|0000-0002-3698-8888 | |
dc.citation.epage | 4 | en_US |
dc.citation.spage | 1 | en_US |
dc.contributor.author | Terzi, M. Begüm | en_US |
dc.contributor.author | Arıkan, Orhan | en_US |
dc.contributor.author | Abacı, A. | en_US |
dc.contributor.author | Candemir, M. | en_US |
dc.contributor.author | Dedoğlu, Mehmet | en_US |
dc.coverage.spatial | Istanbul, Turkey | |
dc.date.accessioned | 2016-02-08T11:56:06Z | |
dc.date.available | 2016-02-08T11:56:06Z | |
dc.date.issued | 2014-10 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 16-17 Oct. 2014 | |
dc.description | Conference name: 18th National Biomedical Engineering Meeting, 2014 | |
dc.description.abstract | In patients with acute coronary syndrome, temporary chest pains together with changes in ECG ST segment and T wave occur shortly before the start of myocardial infarction. In order to diagnose acute coronary syndromes early, a new technique which detects changes in ECG ST/T sections is developed. As a result of implementing the developed technique to real ECG recordings, it is shown that the proposed technique provides reliable detections. Therefore, the developed technique is expected to provide early diagnosis of acute coronary syndromes which will lead to a significant decrease in heart failure and mortality rates. © 2014 IEEE. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:56:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.1109/BIYOMUT.2014.7026388 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/27543 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/BIYOMUT.2014.7026388 | en_US |
dc.source.title | 18th National Biomedical Engineering Meeting, BIYOMUT 2014 | en_US |
dc.subject | Acute coronary syndrome | en_US |
dc.subject | Acute myocardial infarction | en_US |
dc.subject | Electrocardiogram (ECG) signal classification | en_US |
dc.subject | Feature detection | en_US |
dc.subject | Kernel method | en_US |
dc.subject | Support vector machine (SVM) | en_US |
dc.subject | Biomedical engineering | en_US |
dc.subject | Cardiology | en_US |
dc.subject | Diseases | en_US |
dc.subject | Electrocardiography | en_US |
dc.subject | Heart | en_US |
dc.subject | Support vector machines | en_US |
dc.subject | Diagnosis | en_US |
dc.title | Akut koroner sendromların otomatik ST/T sınıflandırıcısı ile erken tanısı | en_US |
dc.title.alternative | Early diagnosis of acute coronary syndromes with automatic ST/T classifier | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Early diagnosis of acute coronary syndromes with automatic.pdf
- Size:
- 781.12 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version