Enzymatic degradation of self-assembled peptide nanofiber gels

Available
The embargo period has ended, and this item is now available.

Date

2016-02

Editor(s)

Advisor

Güler, Mustafa Özgür

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
2
views
40
downloads

Series

Abstract

The self-assembled peptide nano ber gels have received enormous attention because of their inherent biocompatible, biodegradable and functional properties. They provide a smart platform for a range of applications such as tissue engineering, drug delivery and wound healing. These gels are formed through noncovalent interactions such as hydrogen bonding, hydrophobic interactions and electrostatic interactions among the peptide amphiphile molecules at physiological conditions. In order to understand the stability of these gels in the presence of proteases in natural conditions, we studied degradation behavior of the gels with proteinase K, which is a non-speci c protease cleaving the peptide bonds. Degradation process was studied by measuring weight measurement and TEM imaging. In addition, sustained release of Rhodamine B from these gels was also studied in the presence of proteases. The results clearly demonstrated that presence of D- amino acids in the peptide nano ber network signi cantly improves their stability against enzymatic degradation and change the release pro le of the encapsulated molecules in the gels. These ndings are interesting for biomedical applications of these materials due to their tunable degradation and controlled release behavior.

Course

Other identifiers

Book Title

Degree Discipline

Materials Science and Nanotechnology

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)