Enzymatic degradation of self-assembled peptide nanofiber gels
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The self-assembled peptide nano ber gels have received enormous attention because of their inherent biocompatible, biodegradable and functional properties. They provide a smart platform for a range of applications such as tissue engineering, drug delivery and wound healing. These gels are formed through noncovalent interactions such as hydrogen bonding, hydrophobic interactions and electrostatic interactions among the peptide amphiphile molecules at physiological conditions. In order to understand the stability of these gels in the presence of proteases in natural conditions, we studied degradation behavior of the gels with proteinase K, which is a non-speci c protease cleaving the peptide bonds. Degradation process was studied by measuring weight measurement and TEM imaging. In addition, sustained release of Rhodamine B from these gels was also studied in the presence of proteases. The results clearly demonstrated that presence of D- amino acids in the peptide nano ber network signi cantly improves their stability against enzymatic degradation and change the release pro le of the encapsulated molecules in the gels. These ndings are interesting for biomedical applications of these materials due to their tunable degradation and controlled release behavior.