Roll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries

buir.contributor.authorÜlgüt, Burak
buir.contributor.orcidÜlgüt, Burak|0000-0002-4402-0033
dc.citation.epage94
dc.citation.issueNumber1
dc.citation.spage81
dc.citation.volumeNumber44
dc.contributor.authorLiu, Ke-Xin
dc.contributor.authorTan, Ran
dc.contributor.authorZheng, Zhong
dc.contributor.authorZhao, Rui-Rui
dc.contributor.authorÜlgüt, Burak
dc.contributor.authorAi, Xin-Ping
dc.contributor.authorQian, Jiang-Feng
dc.date.accessioned2025-02-24T12:56:53Z
dc.date.available2025-02-24T12:56:53Z
dc.date.issued2024-07-22
dc.departmentDepartment of Chemistry
dc.description.abstractLithium metal, with its exceptionally high theoretical capacity, emerges as the optimal anode choice for high-energy-density rechargeable batteries. Nevertheless, the practical application of lithium metal batteries (LMBs) is constrained by issues such as lithium dendrite growth and low Coulombic efficiency (CE). Herein, a roll-to-roll approach is adopted to prepare meter-scale, lithiophilic Sn-modified Cu mesh (Sn@Cu mesh) as the current collector for long-cycle lithium metal batteries. The two-dimensional (2D) nucleation mechanism on Sn@Cu mesh electrodes promotes a uniform Li flux, facilitating the deposition of Li metal in a large granular morphology. Simultaneously, experimental and computational analyses revealed that the distribution of the electric field in the Cu mesh skeleton induces Li inward growth, thereby generating a uniform, dense composite Li anode. Moreover, the Sn@Cu mesh-Li symmetrical cell demonstrates stable cycling for over 2000 h with an ultra-low 10 mV voltage polarization. In Li parallel to Cu half-cells, the Sn@Cu mesh electrode demonstrates stable cycling for 100 cycles at a high areal capacity of 5 mAh.cm(-2), achieving a CE of 99.2%. This study introduces a simple and large-scale approach for the production of lithiophilic three-dimensional (3D) current collectors, providing more possibilities for the scalable application of Li metal batteries.
dc.identifier.doi10.1007/s12598-024-02875-7
dc.identifier.eissn1867-7185
dc.identifier.issn1001-0521
dc.identifier.urihttps://hdl.handle.net/11693/116764
dc.language.isoEnglish
dc.publisherBeijing Youse Jinshu Yanjiu Zongyuan
dc.relation.isversionofhttps://dx.doi.org/10.1007/s12598-024-02875-7
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleRare Metals
dc.subjectRoll-to-roll fabrication
dc.subjectLithiophilic Sn modification
dc.subjectCu mesh
dc.subjectLi nucleation and growth
dc.subjectLithium metal batteries
dc.titleRoll-to-roll fabrication of lithiophilic Sn-modified Cu mesh via chemical tin plating approach for long-cycling lithium metal batteries
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Roll_to_roll_fabrication_of_lithiophilic_Sn_modified_Cu_mesh_via_chemical_tin_plating_approach_for_long_cycling_lithium_metal_batteries.pdf
Size:
4.97 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: