Unsupervised classification of remotely sensed images using Gaussian mixture models and particle swarm optimization

dc.citation.epage1862en_US
dc.citation.spage1859en_US
dc.contributor.authorArı, Çağlaren_US
dc.contributor.authorAksoy, Selimen_US
dc.coverage.spatialHonolulu, HI, USAen_US
dc.date.accessioned2016-02-08T12:21:47Z
dc.date.available2016-02-08T12:21:47Z
dc.date.issued2010en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionDate of Conference: 25-30 July 2010en_US
dc.description.abstractGaussian mixture models (GMM) are widely used for un-supervised classification applications in remote sensing. Expectation-Maximization (EM) is the standard algorithm employed to estimate the parameters of these models. However, such iterative optimization methods can easily get trapped into local maxima. Researchers use population-based stochastic search algorithms to obtain better estimates. We present a novel particle swarm optimization-based algorithm for maximum likelihood estimation of Gaussian mixture models. The proposed approach provides solutions for important problems in effective application of population-based algorithms to the clustering problem. We present a new parametrization for arbitrary covariance matrices that allows independent updating of individual parameters during the search process. We also describe an optimization formulation for identifying the correspondence relations between different parameter orderings of candidate solutions. Experiments on a hyperspectral image show better clustering results compared to the commonly used EM algorithm for estimating GMMs. © 2010 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:21:47Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010en
dc.identifier.doi10.1109/IGARSS.2010.5653855en_US
dc.identifier.urihttp://hdl.handle.net/11693/28481en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IGARSS.2010.5653855en_US
dc.source.title2010 IEEE International Geoscience and Remote Sensing Symposiumen_US
dc.subjectClusteringen_US
dc.subjectGaussian Mixture Modelen_US
dc.subjectParametrizationsen_US
dc.subjectParticle swarmen_US
dc.subjectStochastic searchen_US
dc.subjectBlind source separationen_US
dc.subjectCovariance matrixen_US
dc.subjectEstimationen_US
dc.subjectGaussian distributionen_US
dc.subjectGeologyen_US
dc.subjectMaximum likelihood estimationen_US
dc.subjectOptical communicationen_US
dc.subjectParticle swarm optimization (PSO)en_US
dc.subjectRemote sensingen_US
dc.subjectStochastic modelsen_US
dc.subjectStochastic systemsen_US
dc.subjectClustering algorithmsen_US
dc.titleUnsupervised classification of remotely sensed images using Gaussian mixture models and particle swarm optimizationen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Unsupervised classification of remotely sensed images using Gaussian mixture models and particle swarm optimization.pdf
Size:
134.57 KB
Format:
Adobe Portable Document Format
Description:
Full printable version