Concurrent design of energy management and vehicle stability control algorithms for a parallel hybrid vehicle using dynamic programming

Date

2012

Editor(s)

Advisor

Çakmakcı, Melih

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Concurrent design of controllers for a vehicle equipped with a parallel hybrid powertrain is studied. Our work focuses on simultaneously solving two automotive control problems, energy management and vehicle stability, which are traditionally considered separately. The optimal actions for the controllers are obtained by applying dynamic programming using pre-determined drive cycles. By analyzing these actions rule-based controllers are designed so that the results can be implemented on real vehicle controllers. These control algorithms calculate the desired values for the state-of-charge and the wheel slip for the vehicle and this information together with the actual data are used to supervise the subsystem controllers. Our control strategy is based on minimizing the fuel consumption and the wheel slip concurrently. The controller design problems are solved separately also and compared to the concurrent solution. Results show that promising benefits can be obtained from the concurrent approach for designing hybrid vehicles which display better fuel economy and vehicle stability

Course

Other identifiers

Book Title

Degree Discipline

Mechanical Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)