Steklov regularization and trajectory methods for univariate global optimization
buir.contributor.author | Arıkan, Orhan | |
buir.contributor.orcid | Arıkan, Orhan|0000-0002-3698-8888 | |
dc.citation.epage | 120 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 91 | en_US |
dc.citation.volumeNumber | 76 | en_US |
dc.contributor.author | Arıkan, Orhan | |
dc.contributor.author | Burachik, R. S. | |
dc.contributor.author | Kaya, C. Y. | |
dc.date.accessioned | 2021-02-19T08:34:27Z | |
dc.date.available | 2021-02-19T08:34:27Z | |
dc.date.issued | 2020 | |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | We introduce a new regularization technique, using what we refer to as the Steklov regularization function, and apply this technique to devise an algorithm that computes a global minimizer of univariate coercive functions. First, we show that the Steklov regularization convexifies a given univariate coercive function. Then, by using the regularization parameter as the independent variable, a trajectory is constructed on the surface generated by the Steklov function. For monic quartic polynomials, we prove that this trajectory does generate a global minimizer. In the process, we derive some properties of quartic polynomials. Comparisons are made with a previous approach which uses a quadratic regularization function. We carry out numerical experiments to illustrate the working of the new method on polynomials of various degree as well as a non-polynomial function. | en_US |
dc.description.provenance | Submitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-02-19T08:34:27Z No. of bitstreams: 1 Steklov_regularization_and_trajectory_methods_for_univariate_global_optimization.pdf: 2967356 bytes, checksum: b090c9ae2dd0dd8932cd9d7c10c4aaea (MD5) | en |
dc.description.provenance | Made available in DSpace on 2021-02-19T08:34:27Z (GMT). No. of bitstreams: 1 Steklov_regularization_and_trajectory_methods_for_univariate_global_optimization.pdf: 2967356 bytes, checksum: b090c9ae2dd0dd8932cd9d7c10c4aaea (MD5) Previous issue date: 2020 | en |
dc.identifier.doi | 10.1007/s10898-019-00837-3 | en_US |
dc.identifier.issn | 0925-5001 | |
dc.identifier.uri | http://hdl.handle.net/11693/75476 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | https://dx.doi.org/10.1007/s10898-019-00837-3 | en_US |
dc.source.title | Journal of Global Optimization | en_US |
dc.subject | Global optimization | en_US |
dc.subject | Mean filter | en_US |
dc.subject | Steklov smoothing | en_US |
dc.subject | Steklov regularization | en_US |
dc.subject | Scale–shift invariance | en_US |
dc.subject | Trajectory methods | en_US |
dc.title | Steklov regularization and trajectory methods for univariate global optimization | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Steklov_regularization_and_trajectory_methods_for_univariate_global_optimization.pdf
- Size:
- 2.83 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: