On a particular type of product manifolds and shear-free cosmological models

dc.citation.epage175009-12en_US
dc.citation.issueNumber17en_US
dc.citation.spage175009-1en_US
dc.citation.volumeNumber28en_US
dc.contributor.authorGürses M.en_US
dc.contributor.authorPlaue, M.en_US
dc.contributor.authorScherfner, M.en_US
dc.date.accessioned2015-07-28T12:00:44Z
dc.date.available2015-07-28T12:00:44Z
dc.date.issued2011en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractShear-free flows or observer fields are important objects of study in general relativity; stationary or rigid observers are important examples of shear-free reference frames. In this paper, we introduce a geometric structure based on a local coordinate expression of metrics admitting a shear-free reference frame. Furthermore, we investigate a large sub-class of these models ('tilted' warped products) that includes the Robertson-Walker spacetime, the Gödel spacetime and other models of Gödel type. We present a novel example of a rotating and expanding cosmological model that is contained in this class. Finally, we describe the geodesic barotropic perfect fluid solutions. © 2011 IOP Publishing Ltd.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:00:44Z (GMT). No. of bitstreams: 1 10.1088-0264-9381-28-17-175009.pdf: 172163 bytes, checksum: b2521f8d0e0179691c789985702514be (MD5)en
dc.identifier.doi10.1088/0264-9381/28/17/175009en_US
dc.identifier.eissn1361-6382
dc.identifier.issn0264-9381
dc.identifier.urihttp://hdl.handle.net/11693/12247
dc.language.isoEnglishen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1088/0264-9381/28/17/175009en_US
dc.source.titleClassical and Quantum Gravityen_US
dc.subject04.20.Cven_US
dc.subject04.20.Jben_US
dc.subject04.20.Gzen_US
dc.titleOn a particular type of product manifolds and shear-free cosmological modelsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1088-0264-9381-28-17-175009.pdf
Size:
168.13 KB
Format:
Adobe Portable Document Format
Description:
Full printable version