Incorporating the surfing behavior of web users into PageRank

Date

2013-10-11

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

International Conference on Information and Knowledge Management, Proceedings

Print ISSN

Electronic ISSN

Publisher

ACM

Volume

Issue

Pages

2351 - 2356

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
63
downloads

Series

Abstract

In large-scale commercial web search engines, estimating the importance of a web page is a crucial ingredient in ranking web search results. So far, to assess the importance of web pages, two different types of feedback have been taken into account, independent of each other: the feedback obtained from the hyperlink structure among the web pages (e.g., PageRank) or the web browsing patterns of users (e.g., BrowseRank). Unfortunately, both types of feedback have certain drawbacks. While the former lacks the user preferences and is vulnerable to malicious intent, the latter suffers from sparsity and hence low web coverage. In this work, we combine these two types of feedback under a hybrid page ranking model in order to alleviate the above-mentioned drawbacks. Our empirical results indicate that the proposed model leads to better estimation of page importance according to an evaluation metric that relies on user click feedback obtained from web search query logs. We conduct all of our experiments in a realistic setting, using a very large scale web page collection (around 6.5 billion web pages) and web browsing data (around two billion web page visits). Copyright is held by the owner/author(s).

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)