Yielding and fracture mechanisms of nanowires

buir.contributor.authorÇıracı, Salim
buir.contributor.orcidÇıracı, Salim|0000-0001-8023-9860
dc.citation.epage12642en_US
dc.citation.issueNumber19en_US
dc.citation.spage12632en_US
dc.citation.volumeNumber56en_US
dc.contributor.authorMehrez, H.en_US
dc.contributor.authorÇıracı, Salimen_US
dc.date.accessioned2016-02-08T10:47:17Z
dc.date.available2016-02-08T10:47:17Z
dc.date.issued1997en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractThis paper presents a detailed analysis of atomic structure and force variations in metal nanowires under tensile strain. Our work is based on state of the art molecular dynamics simulations and ab initio self-consistent field calculations within the local density approximation, and predicts structural transformations. It is found that yielding and fracture mechanisms depend on the size, atomic arrangement, and temperature. The elongation under uniaxial stress is realized by consecutive quasielastic and yielding stages; the neck develops by the migration of atoms, but mainly by the sequential implementation of a new layer with a smaller cross section at certain ranges of uniaxial strain. This causes an abrupt decrease of the tensile force. Owing to the excessive strain at the neck, the original structure and atomic registry are modified; atoms show a tendency to rearrange in closed-packed structures. In certain circumstances, a bundle of atomic chains or a single atomic chain forms as a result of transition from the hollow site to the top site registry shortly before the break. The wire is represented by a linear combination of atomic pseudopotentials and the current is calculated to investigate the correlation between conductance variations and atomic rearrangements of the wire during the stretch. The origin of the observed "giant" yield strength is explained by using results of the present simulations and ab initio calculations of the total energy and Young's modulus for an infinite atomic chain.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:47:17Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1997en
dc.identifier.issn0163-1829
dc.identifier.urihttp://hdl.handle.net/11693/25581
dc.language.isoEnglishen_US
dc.publisherAmerican Physical Societyen_US
dc.source.titlePhysical Review B - Condensed Matter and Materials Physicsen_US
dc.titleYielding and fracture mechanisms of nanowiresen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yielding and fracture mechanisms of nanowires.pdf
Size:
308.6 KB
Format:
Adobe Portable Document Format
Description:
Full printable version