Two-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor application

buir.contributor.authorDağ, Ömer
dc.citation.epage344en_US
dc.citation.spage336en_US
dc.citation.volumeNumber52en_US
dc.contributor.authorMei, P.en_US
dc.contributor.authorKaneti, Y. V.en_US
dc.contributor.authorPramanik, M.en_US
dc.contributor.authorTakei, T.en_US
dc.contributor.authorDağ, Ömeren_US
dc.contributor.authorSugahara, Y.en_US
dc.contributor.authorYamauchi, Y.en_US
dc.date.accessioned2019-02-21T16:01:52Zen_US
dc.date.available2019-02-21T16:01:52Zen_US
dc.date.issued2018en_US
dc.departmentDepartment of Chemistryen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractMesoporous vanadium phosphate (VOPO4) nanosheets have been successfully synthesized through an easy and reproducible lyotropic liquid crystals (LLC) templating approach for the first time. Using the triblock copolymer (P123) as a surfactant, VOPO4 precursor with a well-developed 2D hexagonal mesostructure can be obtained. Following complete removal of the template by calcination, crystallized VOPO4 frameworks with less-ordered mesostructure are achieved. The as-prepared mesoporous VOPO4 nanosheets exhibit superior pseudocapacitive performance (767 F g‒1 at 0.5A g‒1) by virtue of the favorable mesostructure that gives rise to abundant easily accessible redox active sites as well as reinforced charge transfer and ion diffusion properties. The charge storage mechanism of the mesoporous VOPO4 nanosheets has been experimentally demonstrated to be based on the reversible two-step redox reactions between V(V) and V(III) in acidic medium. This advantageous LLC templating strategy is expected to open up a new route for designing various mesoporous metal phosphates with superior electrochemical performance for utilization in energy storage devices.en_US
dc.description.provenanceMade available in DSpace on 2019-02-21T16:01:52Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en_US
dc.description.sponsorshipThis work was supported by the Australian Research Council (ARC) Future Fellow ( FT150100479 ), JSPS KAKENHI ( 17H05393 and 17K19044 ), and the research fund by the Suzuken Memorial Foundation. Appendix Aen_US
dc.embargo.release2020-10-01en_US
dc.identifier.doi10.1016/j.nanoen.2018.07.052en_US
dc.identifier.eissn2211-3282en_US
dc.identifier.issn2211-2855en_US
dc.identifier.urihttp://hdl.handle.net/11693/49931en_US
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.nanoen.2018.07.052en_US
dc.relation.projectSuzuken Memorial Foundation - Japan Society for the Promotion of Science, JSPS: 17H05393 - Japan Society for the Promotion of Science, JSPS: 17K19044 - Australian Research Council, ARC - Australian Research Council, ARC: FT150100479en_US
dc.source.titleNano Energyen_US
dc.subjectLyotropic liquid crystalsen_US
dc.subjectMesoporous materialsen_US
dc.subjectMetal phosphatesen_US
dc.subjectNanosheetsen_US
dc.subjectSupercapacitorsen_US
dc.subjectTemplated synthesisen_US
dc.titleTwo-dimensional mesoporous vanadium phosphate nanosheets through liquid crystal templating method toward supercapacitor applicationen_US
dc.typeArticleen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Two_dimensional_mesoporous_vanadium_phosphate_nanosheets_through_liquid_crystal_templating_method_toward_supercapacitor_application.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format
Description:
Full printable version