Infinite dimensional and reduced order observers for Burgers equation

Date

2005

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
3
views
35
downloads

Citation Stats

Series

Abstract

Obtaining a representative model in feedback control system design problems is a key step and is generally a challenge. For spatially continuous systems, it becomes more difficult as the dynamics is infinite dimensional and the well known techniques of systems and control engineering are difficult to apply directly. In this paper, observer design is reported for one-dimensional Burgers equation, which is a non-linear partial differential equation. An infinite dimensional form of the observer is demonstrated to converge asymptotically to the target dynamics, and proper orthogonal decomposition is used to obtain the reduced order observer. When this is done, the corresponding observer is shown to be successful under certain circumstances. The paper unfolds the connections between target dynamics, observer and their finite dimensional counterparts. A set of simulation results has been presented to justify the theoretical claims of the paper.

Source Title

International Journal of Control

Publisher

Taylor & Francis

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English