Split algorithms for multiobjective integer programming problems

buir.contributor.authorKarsu, Özlem
buir.contributor.authorUlus, Firdevs
buir.contributor.orcidKarsu, Özlem|0000-0002-9926-2021
buir.contributor.orcidUlus, Firdevs|0000-0002-0532-9927
dc.citation.epage105673-16en_US
dc.citation.spage105673-1en_US
dc.citation.volumeNumber140en_US
dc.contributor.authorKarsu, Özlem
dc.contributor.authorUlus, Firdevs
dc.date.accessioned2023-02-16T08:12:47Z
dc.date.available2023-02-16T08:12:47Z
dc.date.issued2022-04
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractWe consider split algorithms that partition the objective function space into p or p−1 dimensional regions so as to search for nondominated points of multiobjective integer programming problems, where p is the number of objectives. We provide a unified approach that allows different split strategies to be used within the same algorithmic framework with minimum change. We also suggest an effective way of making use of the information on subregions when setting the parameters of the scalarization problems used in the p-split structure. We compare the performances of variants of these algorithms both as exact algorithms and as solution approaches under time restriction, considering the fact that finding the whole set may be computationally infeasible or undesirable in practice. We demonstrate through computational experiments that while the (p−1)-split structure is superior in terms of overall computational time, the p-split structure provides significant advantage under time/cardinality limited settings in terms of representativeness, especially with adaptive parameter setting and/or a suitably chosen order for regions to be explored.en_US
dc.description.provenanceSubmitted by Bilge Kat (bilgekat@bilkent.edu.tr) on 2023-02-16T08:12:47Z No. of bitstreams: 1 Split_algorithms_for_multiobjective_integer_programming_problems.pdf: 790070 bytes, checksum: 2f317a22fdd7e16b562479cdce1d7116 (MD5)en
dc.description.provenanceMade available in DSpace on 2023-02-16T08:12:47Z (GMT). No. of bitstreams: 1 Split_algorithms_for_multiobjective_integer_programming_problems.pdf: 790070 bytes, checksum: 2f317a22fdd7e16b562479cdce1d7116 (MD5) Previous issue date: 2022-04en
dc.identifier.doi10.1016/j.cor.2021.105673en_US
dc.identifier.eissn1873-765X
dc.identifier.issn0305-0548
dc.identifier.urihttp://hdl.handle.net/11693/111411
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://dx.doi.org/10.1016/j.cor.2021.105673en_US
dc.source.titleComputers and Operations Researchen_US
dc.subjectEpsilon constraint scalarizationen_US
dc.subjectMultiobjective integer programmingen_US
dc.subjectPascoletti–Serafini scalarizationen_US
dc.subjectWeighted sum scalarizationen_US
dc.titleSplit algorithms for multiobjective integer programming problemsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Split_algorithms_for_multiobjective_integer_programming_problems.pdf
Size:
771.55 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: