Provably optimal sparse solutions to overdetermined linear systems with non-negativity constraints in a least-squares sense by implicit enumeration

buir.contributor.authorAktaş, Fatih Selim
buir.contributor.authorEkmekcioglu, Ömer
buir.contributor.authorPinar, Mustafa Çelebi
buir.contributor.orcidPinar, Mustafa Çelebi|0000-0002-8307-187X
dc.citation.epage2535en_US
dc.citation.spage2505en_US
dc.citation.volumeNumber22en_US
dc.contributor.authorAktaş, Fatih Selim
dc.contributor.authorEkmekcioglu, Ömer
dc.contributor.authorPinar, Mustafa Çelebi
dc.date.accessioned2022-02-10T11:13:36Z
dc.date.available2022-02-10T11:13:36Z
dc.date.issued2021-12
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractComputing sparse solutions to overdetermined linear systems is a ubiquitous problem in several fields such as regression analysis, signal and image processing, information theory and machine learning. Additional non-negativity constraints in the solution are useful for interpretability. Most of the previous research efforts aimed at approximating the sparsity constrained linear least squares problem, and/or finding local solutions by means of descent algorithms. The objective of the present paper is to report on an efficient and modular implicit enumeration algorithm to find provably optimal solutions to the NP-hard problem of sparsity-constrained non-negative least squares. We focus on the problem where the system is assumed to be over-determined where the matrix has full column rank. Numerical results with real test data as well as comparisons of competing methods and an application to hyperspectral imaging are reported. Finally, we present a Python library implementation of our algorithm.en_US
dc.description.provenanceSubmitted by Dilan Ayverdi (dilan.ayverdi@bilkent.edu.tr) on 2022-02-10T11:13:36Z No. of bitstreams: 1 Provably_optimal_sparse_solutions_to_overdetermined_linear_systems_with_non‑negativity_constraints_in_a_least‑squares_sense_by_implicit_enumeration.pdf: 2905823 bytes, checksum: a94b95019d4b7c04c6fac2c95fee10f8 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-10T11:13:36Z (GMT). No. of bitstreams: 1 Provably_optimal_sparse_solutions_to_overdetermined_linear_systems_with_non‑negativity_constraints_in_a_least‑squares_sense_by_implicit_enumeration.pdf: 2905823 bytes, checksum: a94b95019d4b7c04c6fac2c95fee10f8 (MD5) Previous issue date: 2021-12en
dc.identifier.doi10.1007/s11081-021-09676-2en_US
dc.identifier.eissn1573-2924
dc.identifier.issn1389-4420
dc.identifier.urihttp://hdl.handle.net/11693/77222
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://doi.org/10.1007/s11081-021-09676-2en_US
dc.source.titleOptimization and Engineeringen_US
dc.subjectInverse problemsen_US
dc.subjectSparse approximationen_US
dc.subjectOverdetermined linear systemsen_US
dc.subjectSparse solutionsen_US
dc.subjectBranch and bounden_US
dc.subjectImplicit enumerationen_US
dc.subjectNon negative least squaresen_US
dc.titleProvably optimal sparse solutions to overdetermined linear systems with non-negativity constraints in a least-squares sense by implicit enumerationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Provably_optimal_sparse_solutions_to_overdetermined_linear_systems_with_non‑negativity_constraints_in_a_least‑squares_sense_by_implicit_enumeration.pdf
Size:
2.77 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: