State-of-the-art in large-scale volume visualization beyond structured data

buir.contributor.authorDemirci, Serkan
buir.contributor.authorGüdükbay, Uğur
buir.contributor.orcidDemirci, Serkan|0000-0001-8805-5310
buir.contributor.orcidGüdükbay, Uğur|0000-0003-2462-6959
dc.citation.epage515en_US
dc.citation.issueNumber3
dc.citation.spage[491]
dc.citation.volumeNumber42
dc.contributor.authorSarton, J.
dc.contributor.authorZellmann, S.
dc.contributor.authorDemirci, Serkan
dc.contributor.authorGüdükbay, Uğur
dc.contributor.authorAlexandre-Barff, W.
dc.contributor.authorLucas, L.
dc.contributor.authorDischler, J. M.
dc.contributor.authorWesner, S.
dc.contributor.authorWald, I.
dc.contributor.editorAlliez, Pierre
dc.contributor.editorWimmer, Michael
dc.date.accessioned2024-03-14T13:05:16Z
dc.date.available2024-03-14T13:05:16Z
dc.date.issued2023-06-27
dc.departmentDepartment of Computer Engineering
dc.description.abstractVolume data these days is usually massive in terms of its topology, multiple fields, or temporal component. With the gap between compute and memory performance widening, the memory subsystem becomes the primary bottleneck for scientific volume visualization. Simple, structured, regular representations are often infeasible because the buses and interconnects involved need to accommodate the data required for interactive rendering. In this state-of-the-art report, we review works focusing on large-scale volume rendering beyond those typical structured and regular grid representations. We focus primarily on hierarchical and adaptive mesh refinement representations, unstructured meshes, and compressed representations that gained recent popularity. We review works that approach this kind of data using strategies such as out-of-core rendering, massive parallelism, and other strategies to cope with the sheer size of the ever-increasing volume of data produced by today's supercomputers and acquisition devices. We emphasize the data management side of large-scale volume rendering systems and also include a review of tools that support the various volume data types discussed.
dc.description.provenanceMade available in DSpace on 2024-03-14T13:05:16Z (GMT). No. of bitstreams: 1 State-of-the-art_in_Large-Scale_Volume_Visualization_Beyond_Structured_Data.pdf: 569345 bytes, checksum: 1d0a2a20a51dc6f04d936f3433cd2748 (MD5) Previous issue date: 2023-06en
dc.identifier.doi10.1111/cgf.14857en_US
dc.identifier.eissn1467-8659en_US
dc.identifier.issn0167-7055en_US
dc.identifier.urihttps://hdl.handle.net/11693/114757en_US
dc.language.isoEnglishen_US
dc.publisherEurographics and John Wiley & Sons Ltd.en_US
dc.relation.isversionofhttps://dx.doi.org/10.1111/cgf.14857
dc.source.titleComputer Graphics Forum
dc.subjectComputing methodologies → Rendering
dc.subjectVolumetric models
dc.subjectRay tracing
dc.subjectGraphics processors
dc.subjectMassively parallel algorithms
dc.subjectDistributed algorithms
dc.subjectHuman-centered computing → Visualization toolkits
dc.subjectScientific visualization
dc.titleState-of-the-art in large-scale volume visualization beyond structured data
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
State-of-the-art_in_Large-Scale_Volume_Visualization_Beyond_Structured_Data.pdf
Size:
562.57 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: