Traveling wave solutions of degenerate coupled multi-KdV equations
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Traveling wave solutions of degenerate coupled ℓ-KdV equations are studied. Due to symmetry reduction these equations reduce to one ordinary differential equation (ODE), i.e., (f′)2 = Pn(f) where Pn(f) is a polynomial function of f of degree n = ℓ + 2, where ℓ ≥ 3 in this work. Here ℓ is the number of coupled fields. There is no known method to solve such ordinary differential equations when ℓ ≥ 3. For this purpose, we introduce two different types of methods to solve the reduced equation and apply these methods to degenerate three-coupled KdV equation. One of the methods uses the Chebyshev’s theorem. In this case, we find several solutions, some of which may correspond to solitary waves. The second method is a kind of factorizing the polynomial Pn(f) as a product of lower degree polynomials. Each part of this product is assumed to satisfy different ODEs.