Sequential prediction over hierarchical structures

Date

2016

Authors

Vanli, N. D.
Gokcesu, K.
Sayin, M. O.
Yildiz, H.
Kozat, S. S.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Signal Processing

Print ISSN

1053-587X

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

64

Issue

23

Pages

6284 - 6298

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
25
downloads

Series

Abstract

We study sequential compound decision problems in the context of sequential prediction of real valued sequences. In particular, we consider finite state (FS) predictors that are constructed based on a hierarchical structure, such as the order preserving patterns of the sequence history. We define hierarchical equivalence classes by tying certain models at a hierarchy level in a recursive manner in order to mitigate undertraining problems. These equivalence classes defined on a hierarchical structure are then used to construct a super exponential number of sequential FS predictors based on their combinations and permutations. We then introduce truly sequential algorithms with computational complexity only linear in the pattern length that 1) asymptotically achieve the performance of the best FS predictor or the best linear combination of all the FS predictors in an individual sequence manner without any stochastic assumptions over any data length n under a wide range of loss functions; 2) achieve the mean square error of the best linear combination of all FS filters or predictors in the steady-state for certain nonstationary models. We illustrate the superior convergence and tracking capabilities of our algorithm with respect to several state-of-the-art methods in the literature through simulations over synthetic and real benchmark data. © 1991-2012 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)