Improving visual SLAM by filtering outliers with the aid of optical flow

Date
2011
Advisor
Saranlı, Uluç
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Simultaneous Localization and Mapping (SLAM) for mobile robots has been one of the challenging problems for the robotics community. Extensive study of this problem in recent years has somewhat saturated the theoretical and practical background on this topic. Within last few years, researches on SLAM have been headed towards Visual SLAM, in which camera is used as the primary sensor. Superior to many SLAM application run with planar robots, VSLAM allows us to estimate the 3D model of the environment and 6-DOF pose of the robot. Being applied to robotics only recently, VSLAM still has a lot of room for improvement. In particular, a common issue both in normal and Visual SLAM algorithms is the data association problem. Wrong data association either disturbs stability or result in divergence of the SLAM process. In this study, we propose two outlier elimination methods which use predicted feature location error and optical flow field. The former method asserts estimated landmark projection and its measurement locations to be close. The latter accepts optical flow field as a reference and compares the vector formed by consecutive matched feature locations; eliminates matches contradicting with the local optical flow vector field. We have shown these two methods to be saving VSLAM from divergence and improving its overall performance. We have also described our new modular SLAM library, SLAM++.

Course
Other identifiers
Book Title
Keywords
Visual Simultaneous Localization and Mapping (SLAM), Optical flow, Outlier elimination
Citation
Published Version (Please cite this version)