Blind federated learning at the wireless edge with low-resolution ADC and DAC

Date

2021-06-15

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Wireless Communications

Print ISSN

1536-1276

Electronic ISSN

1558-2248

Publisher

IEEE

Volume

20

Issue

12

Pages

7786 - 7798

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
33
downloads

Series

Abstract

We study collaborative machine learning systems where a massive dataset is distributed across independent workers which compute their local gradient estimates based on their own datasets. Workers send their estimates through a multipath fading multiple access channel with orthogonal frequency division multiplexing to mitigate the frequency selectivity of the channel. We assume that there is no channel state information (CSI) at the workers, and the parameter server (PS) employs multiple antennas to align the received signals. To reduce the power consumption and the hardware costs, we employ complex-valued low-resolution digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), at the transmitter and the receiver sides, respectively, and study the effects of practical low-cost DACs and ADCs on the learning performance. Our theoretical analysis shows that the impairments caused by low-resolution DACs and ADCs, including those of one-bit DACs and ADCs, do not prevent the convergence of the federated learning algorithms, and the multipath channel effects vanish when a sufficient number of antennas are used at the PS. We also validate our theoretical results via simulations, and demonstrate that using low-resolution, even one-bit, DACs and ADCs causes only a slight decrease in the learning accuracy.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)