Concept representation with overlapping feature intervals
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This article presents a new form of exemplar-based learning method, based on overlapping feature intervals. In this model, a concept is represented by a collection of overlappling intervals for each feature and class. Classification with Overlapping Feature Intervals (COFI) is a particular implementation of this technique. In this incremental, inductive, and supervised learning method, the basic unit of the representation is an interval. The COFI algorithm learns the projections of the intervals in each feature dimension for each class. Initially, an interval is a point on a feature-class dimension; then it can be expanded through generalization. No specialization of intervals is done on feature-class dimensions by this algorithm. Classification in the COFI algorithm is based on a majority voting among the local predictions that are made individually by each feature. An evaluation of COFI and its comparison with similar other classification techniques is given.