Triplets of closely embedded Dirichlet type spaces on the unit polydisc

dc.citation.epage1544en_US
dc.citation.issueNumber5en_US
dc.citation.spage1525en_US
dc.citation.volumeNumber7en_US
dc.contributor.authorCojuhari, P.en_US
dc.contributor.authorGheondea, A.en_US
dc.date.accessioned2016-02-08T09:35:12Z
dc.date.available2016-02-08T09:35:12Z
dc.date.issued2013en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe propose a general concept of triplet of Hilbert spaces with closed embeddings, instead of continuous ones, and we show how rather general weighted L2 spaces yield this kind of generalized triplets of Hilbert spaces for which the underlying spaces and operators can be explicitly calculated. Then we show that generalized triplets of Hilbert spaces with closed embeddings can be naturally associated to any pair of Dirichlet type spaces Dα(DN) of holomorphic functions on the unit polydisc DN and we explicitly calculate the associated operators in terms of reproducing kernels and radial derivative operators. We also point out a rigging of the Hardy space H2(DN) through a scale of Dirichlet type spaces and Bergman type spaces. © 2012 Springer Basel.en_US
dc.identifier.doi10.1007/s11785-012-0269-zen_US
dc.identifier.eissn1661-8262
dc.identifier.issn1661-8254
dc.identifier.urihttp://hdl.handle.net/11693/20784
dc.language.isoEnglishen_US
dc.publisherBirkhaeuser Scienceen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11785-012-0269-zen_US
dc.source.titleComplex Analysis and Operator Theoryen_US
dc.subjectClosed embeddingen_US
dc.subjectDirichlet type space on the unit polydiscen_US
dc.subjectHamiltonianen_US
dc.subjectKernel operatoren_US
dc.subjectRigged Hilbert spacesen_US
dc.subjectTriplet of Hilbert spacesen_US
dc.titleTriplets of closely embedded Dirichlet type spaces on the unit polydiscen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Triplets of Closely Embedded Dirichlet Type Spaces on the Unit Polydisc.pdf
Size:
304.31 KB
Format:
Adobe Portable Document Format
Description:
Full printable version