Cross-Modal correlation mining using graph algorithms

dc.citation.epage73en_US
dc.citation.spage49en_US
dc.contributor.authorPan, J. -Y.en_US
dc.contributor.authorYang, H. -J.en_US
dc.contributor.authorFaloutsos, C.en_US
dc.contributor.authorDuygulu, Pınaren_US
dc.contributor.editorZhu, X.
dc.contributor.editorDavidson, I.
dc.date.accessioned2019-04-30T05:50:47Z
dc.date.available2019-04-30T05:50:47Z
dc.date.issued2007en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.descriptionChapter 4en_US
dc.description.abstractMultimedia objects like video clips or captioned images contain data of various modalities such as image, audio, and transcript text. Correlations across different modalities provide information about the multimedia content, and are useful in applications ranging from summarization to semantic captioning. We propose a graph-based method, MAGIC, which represents multimedia data as a graph and can find cross-modal correlations using “random walks with restarts.” MAGIC has several desirable properties: (a) it is general and domain-independent; (b) it can detect correlations across any two modalities; (c) it is insensitive to parameter settings; (d) it scales up well for large datasets; (e) it enables novel multimedia applications (e.g., group captioning); and (f) it creates opportunity for applying graph algorithms to multimedia problems. When applied to automatic image captioning, MAGIC finds correlations between text and image and achieves a relative improvement of 58% in captioning accuracy as compared to recent machine learning techniques.en_US
dc.description.provenanceSubmitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2019-04-30T05:50:47Z No. of bitstreams: 1 Cross-Modal_Correlation_Mining_Using_Graph_Algorithms.pdf: 524286 bytes, checksum: 20c8f6060a36383a405fb5d964cc8841 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-04-30T05:50:47Z (GMT). No. of bitstreams: 1 Cross-Modal_Correlation_Mining_Using_Graph_Algorithms.pdf: 524286 bytes, checksum: 20c8f6060a36383a405fb5d964cc8841 (MD5) Previous issue date: 2007en
dc.identifier.doi10.4018/978-1-59904-252-7.ch004en_US
dc.identifier.doi10.4018/978-1-59904-252-7en_US
dc.identifier.isbn9781599042527en_US
dc.identifier.urihttp://hdl.handle.net/11693/51018en_US
dc.language.isoEnglishen_US
dc.publisherIGI Globalen_US
dc.relation.ispartofKnowledge discovery and data mining: Challenges and realitiesen_US
dc.relation.isversionofhttps://doi.org/10.4018/978-1-59904-252-7.ch004en_US
dc.relation.isversionofhttps://doi.org/10.4018/978-1-59904-252-7en_US
dc.titleCross-Modal correlation mining using graph algorithmsen_US
dc.typeBook Chapteren_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cross-Modal_Correlation_Mining_Using_Graph_Algorithms.pdf
Size:
512 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: