Acquired tolerance of hepatocellular carcinoma cells to selenium deficiency: a selective survival mechanism?
dc.citation.epage | 6715 | en_US |
dc.citation.issueNumber | 20 | en_US |
dc.citation.spage | 6707 | en_US |
dc.citation.volumeNumber | 63 | en_US |
dc.contributor.author | Irmak, M. B. | en_US |
dc.contributor.author | Ince, G. | en_US |
dc.contributor.author | Ozturk, M. | en_US |
dc.contributor.author | Cetin Atalay, R. | en_US |
dc.date.accessioned | 2016-02-08T10:29:06Z | |
dc.date.available | 2016-02-08T10:29:06Z | |
dc.date.issued | 2003 | en_US |
dc.department | Department of Molecular Biology and Genetics | en_US |
dc.description.abstract | Selenium is essential to human health, and its deficiency is associated with different diseases including liver necrosis. Selenium is protective against viral hepatitis and hepatocellular carcinoma (HCC). The underlying molecular mechanisms of selenium effects are not well known. In this study, in vitro response of HCC-derived cell lines to selenium deficiency is examined alone or in conjunction with Vitamin E and copper/zinc. Here, we show that itt vitro selenium deficiency in a subset of HCC-derived cell lines causes oxidative stress and cytochrome c release with subsequent cell death by apoptosis. The oxidative stress and consequent cell death induced by selenium deficiency on these cells are reverted by the antioxidant effect of Vitamin E. However, most HCC cell lines (10 of 13) tolerate selenium deficiency. Consequently, they escape apoptosis. Moreover, nine of these tolerant cell lines have integrated hepatitis B Virus (HBV) DNA in their genomes, and some display p53-249 mutation, indicating past exposure to HBV or aflatoxins, established factors for oxidative stress and cancer risk in liver. An HBV-transfected clone (2.2.15) of the sensitive HepG2 cell line has gained tolerance to selenium deficiency. Our findings indicate that selenium deficiency induces apoptosis in some "hepatocyte-like" cells. However, most HCC cells, particularly HBV-related ones, tolerate selenium deficiency and escape its deadly consequences. Thus, as demonstrated by the gain of survival capacity of apoptosis-sensitive cell lines with Vitamin E, such malignant cells have acquired a selective survival advantage that is prominent under selenium-deficient and oxidative-stress conditions. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T10:29:06Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2003 | en |
dc.identifier.issn | 0008-5472 | |
dc.identifier.uri | http://hdl.handle.net/11693/24419 | |
dc.language.iso | English | en_US |
dc.publisher | American Association for Cancer Research | en_US |
dc.source.title | Cancer Research | en_US |
dc.subject | Aflatoxin | en_US |
dc.subject | Alpha tocopherol | en_US |
dc.subject | Cytochrome c | en_US |
dc.subject | Selenium | en_US |
dc.subject | Apoptosis | en_US |
dc.subject | Cancer risk | en_US |
dc.subject | Cell death | en_US |
dc.subject | Cell protection | en_US |
dc.subject | Cell survival | en_US |
dc.subject | Hepatitis B virus | en_US |
dc.subject | Human | en_US |
dc.subject | Human cell | en_US |
dc.subject | immunological tolerance | en_US |
dc.subject | Liver cell carcinoma | en_US |
dc.subject | Liver necrosis | en_US |
dc.subject | Mitochondrial respiration | en_US |
dc.subject | Oxidative stress | en_US |
dc.title | Acquired tolerance of hepatocellular carcinoma cells to selenium deficiency: a selective survival mechanism? | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Acquired Tolerance of Hepatocellular Carcinoma Cells to Selenium Deficiency A Selective Survival Mechanism.pdf
- Size:
- 401.67 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version