k-node-disjoint hop-constrained survivable networks: polyhedral analysis and branch and cut
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Given a graph with weights on the edges, a set of origin and destination pairs of nodes, and two integers L ≥ 2 and k ≥ 2, the k-node-disjoint hop-constrained network design problem is to find a minimum weight subgraph of G such that between every origin and destination there exist at least k node-disjoint paths of length at most L. In this paper, we consider this problem from a polyhedral point of view. We propose an integer linear programming formulation for the problem for L ∈{2,3} and arbitrary k, and investigate the associated polytope. We introduce new valid inequalities for the problem for L ∈{2,3,4}, and give necessary and sufficient conditions for these inequalities to be facet defining. We also devise separation algorithms for these inequalities. Using these results, we propose a branch-and-cut algorithm for solving the problem for both L = 3 and L = 4 along with some computational results.