Riemann boundary value problem
buir.supervisor | Ostrovskii, Iossif V. | |
dc.contributor.author | Derya, Ayşe Mutlu | |
dc.date.accessioned | 2016-01-08T20:17:47Z | |
dc.date.available | 2016-01-08T20:17:47Z | |
dc.date.issued | 2000 | |
dc.description | Cataloged from PDF version of article. | en_US |
dc.description | Includes bibliographical references (leave 77). | en_US |
dc.description.abstract | We study the Riemann boundary value problem with finite and infinite index. The basis of the solution of the problem with the finite index is the Plemelj-Sokhotski formula. The solution of the problem with infinite index depends not only on the Plemelj-Sokhotski formula but also on some results of the entire functions theory. | |
dc.description.statementofresponsibility | by Ayşe Mutlu Derya | en_US |
dc.format.extent | vii, 77 leaves ; 30 cm. | en_US |
dc.identifier.itemid | B053294 | |
dc.identifier.uri | http://hdl.handle.net/11693/18266 | |
dc.language.iso | English | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Cauchy type integral | |
dc.subject | Hölder condition | |
dc.subject | Singular integral | |
dc.subject | Index | |
dc.subject | Verticity | |
dc.subject | Homogeneous Riemann boundary value problem | |
dc.subject | Non-homogeneous Riemann boundary value problem | |
dc.title | Riemann boundary value problem | en_US |
dc.title.alternative | Riemann'ın sınır değer problemi | |
dc.type | Thesis | en_US |
thesis.degree.discipline | Mathematics | |
thesis.degree.grantor | Bilkent University | |
thesis.degree.level | Master's | |
thesis.degree.name | MS (Master of Science) |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 0008389.pdf
- Size:
- 1.92 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version