An inference attack on genomic data using kinship, complex correlations, and phenotype information

buir.contributor.authorDeznabi, Iman
buir.contributor.authorMobayen, Mohammad
buir.contributor.authorJafari, Nazanin
buir.contributor.authorTaştan, Öznur
buir.contributor.authorAyday, Erman
dc.citation.epage1342en_US
dc.citation.issueNumber4en_US
dc.citation.spage1333en_US
dc.citation.volumeNumber15en_US
dc.contributor.authorDeznabi, Imanen_US
dc.contributor.authorMobayen, Mohammaden_US
dc.contributor.authorJafari, Nazaninen_US
dc.contributor.authorTaştan, Öznuren_US
dc.contributor.authorAyday, Ermanen_US
dc.date.accessioned2019-02-12T08:28:13Z
dc.date.available2019-02-12T08:28:13Z
dc.date.issued2018en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractAbstract—Individuals (and their family members) share (partial) genomic data on public platforms. However, using special characteristics of genomic data, background knowledge that can be obtained from the Web, and family relationship between the individuals, it is possible to infer the hidden parts of shared (and unshared) genomes. Existing work in this field considers simple correlations in the genome (as well as Mendel’s law and partial genomes of a victim and his family members). In this paper, we improve the existing work on inference attacks on genomic privacy. We mainly consider complex correlations in the genome by using an observable Markov model and recombination model between the haplotypes. We also utilize the phenotype information about the victims. We propose an efficient message passing algorithm to consider all aforementioned background information for the inference. We show that the proposed framework improves inference with significantly less information compared to existing work.en_US
dc.description.provenanceSubmitted by Türkan Cesur (cturkan@bilkent.edu.tr) on 2019-02-12T08:28:13Z No. of bitstreams: 1 An_inference_attack_on_genomic_data_using_kinship,_complex_correlations,_and_phenotype_information.pdf: 1528660 bytes, checksum: bf42a98cf07e5c6d1060004e4fff958e (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-12T08:28:13Z (GMT). No. of bitstreams: 1 An_inference_attack_on_genomic_data_using_kinship,_complex_correlations,_and_phenotype_information.pdf: 1528660 bytes, checksum: bf42a98cf07e5c6d1060004e4fff958e (MD5) Previous issue date: 2018en
dc.identifier.doi10.1109/TCBB.2017.2709740en_US
dc.identifier.eissn1557-9964en_US
dc.identifier.issn1545-5963en_US
dc.identifier.urihttp://hdl.handle.net/11693/49301en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://doi.org/10.1109/TCBB.2017.2709740en_US
dc.source.titleIEEE - ACM Transactions on Computational Biology and Bioinformaticsen_US
dc.subjectPrivacyen_US
dc.subjectSecurityen_US
dc.subjectGenomic privacyen_US
dc.subjectİnference attacksen_US
dc.titleAn inference attack on genomic data using kinship, complex correlations, and phenotype informationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_inference_attack_on_genomic_data_using_kinship,_complex_correlations,_and_phenotype_information.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: