Control of underactuated planar hexapedal pronking through a dynamically embedded SLIP monopod

dc.citation.epage4727en_US
dc.citation.spage4721en_US
dc.contributor.authorAnkarali, M.M.en_US
dc.contributor.authorSaranlı, Uluçen_US
dc.contributor.authorSaranli, A.en_US
dc.coverage.spatialAnchorage, AK, USAen_US
dc.date.accessioned2016-02-08T12:23:47Z
dc.date.available2016-02-08T12:23:47Z
dc.date.issued2010en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 3-7 May 2010en_US
dc.description.abstractPronking (aka. stotting) is a gait in which all legs are used in synchrony, resulting in long flight phases and large jumping heights that may potentially be useful for mobile robots on rough terrain. Robotic instantiations of this gait suffer from severe pitch instability either due to underactuation, or the lack of sufficient feedback. Nevertheless, the dynamic nature of this gait suggests that the Spring-Loaded Inverted Pendulum Model (SLIP), a very successful predictive model for both natural and robotic runners, would be a good basis for more robust and maneuverable robotic pronking. In this paper, we describe how "template-based control", a controller structure based on the embedding of a simple dynamical "template" within a more complex "anchor" system, can be used to achieve stable and controllable pronking for a planar, underactuated hexapod model. In this context, high-level control of the gait is regulated through speed and height commands to the SLIP template, while the embedding controller based on approximate inverse-dynamics and carefully designed passive dynamics ensures the stability of the remaining degrees of freedom. We show through extensive simulation experiments that unlike existing open-loop alternatives, the resulting control structure provides stability, explicit maneuverability and significant robustness against sensor and actuator noise. ©2010 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:23:47Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010en
dc.identifier.doi10.1109/ROBOT.2010.5509450en_US
dc.identifier.issn1050-4729en_US
dc.identifier.urihttp://hdl.handle.net/11693/28556en_US
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ROBOT.2010.5509450en_US
dc.source.title2010 IEEE International Conference on Robotics and Automationen_US
dc.subjectApproximate inverseen_US
dc.subjectControl structureen_US
dc.subjectController structuresen_US
dc.subjectDegrees of freedomen_US
dc.subjectDynamic natureen_US
dc.subjectExtensive simulationsen_US
dc.subjectFlight phasisen_US
dc.subjectOpen loopsen_US
dc.subjectPredictive modelsen_US
dc.subjectRough terrainsen_US
dc.subjectSensor and actuatorsen_US
dc.subjectShow throughen_US
dc.subjectSpring loaded inverted pendulumsen_US
dc.subjectTemplate-baseden_US
dc.subjectUnder-actuationen_US
dc.subjectUnderactuateden_US
dc.subjectControllersen_US
dc.subjectRobotsen_US
dc.subjectRoboticsen_US
dc.titleControl of underactuated planar hexapedal pronking through a dynamically embedded SLIP monopoden_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Control of underactuated planar hexapedal pronking through a dynamically embedded SLIP monopod.pdf
Size:
479.03 KB
Format:
Adobe Portable Document Format
Description:
Full printable version