Uncertainty principles in holomorphic function spaces on the unit ball

buir.contributor.authorKaptanoğlu, Hakkı Turgay
buir.contributor.orcidKaptanoğlu, Hakkı Turgay|0000-0002-8795-4426
dc.citation.epage136en_US
dc.citation.issueNumber1
dc.citation.spage122
dc.citation.volumeNumber67
dc.contributor.authorKaptanoğlu, Hakkı Turgay
dc.date.accessioned2024-03-18T13:50:16Z
dc.date.available2024-03-18T13:50:16Z
dc.date.issued2023-07-10
dc.departmentDepartment of Mathematics
dc.description.abstractOn all Bergman–Besov Hilbert spaces on the unit disk, we find self-adjoint weighted shift operators that are differential operators of half-order whose commutators are the identity, thereby obtaining uncertainty relations in these spaces. We also obtain joint average uncertainty relations for pairs of commuting tuples of operators on the same spaces defined on the unit ball. We further identify functions that yield equality in some uncertainty inequalities.
dc.description.provenanceMade available in DSpace on 2024-03-18T13:50:16Z (GMT). No. of bitstreams: 1 Uncertainty_principles_in_holomorphic_function_spaces_on_the_unit_ball.pdf: 290318 bytes, checksum: 604df49a7b4bc1d062db65f3f2530108 (MD5) Previous issue date: 2023-07-10en
dc.identifier.doi10.4153/S0008439523000589
dc.identifier.eissn1496-4287
dc.identifier.issn0008-4395
dc.identifier.urihttps://hdl.handle.net/11693/114915
dc.language.isoEnglish
dc.publisherCambridge University Press
dc.relation.isversionofhttps://dx.doi.org/10.4153/S0008439523000589
dc.source.titleCanadian Mathematical Bulletin
dc.subjectUncertainty principle
dc.subjectWeighted shift operator
dc.subjectBosonic Fock space
dc.subjectBergman–Besov space
dc.titleUncertainty principles in holomorphic function spaces on the unit ball
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Uncertainty_principles_in_holomorphic_function_spaces_on_the_unit_ball.pdf
Size:
288.04 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: