Big data signal processing using boosted RLS algorithm
dc.citation.epage | 1092 | en_US |
dc.citation.spage | 1089 | en_US |
dc.contributor.author | Civek, Burak Cevat | en_US |
dc.contributor.author | Kari, Dariush | en_US |
dc.contributor.author | Delibalta, İ. | en_US |
dc.contributor.author | Kozat, Süleyman Serdar | en_US |
dc.coverage.spatial | Zonguldak, Turkey | en_US |
dc.date.accessioned | 2018-04-12T11:48:36Z | |
dc.date.available | 2018-04-12T11:48:36Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 16-19 May 2016 | en_US |
dc.description | Conference Name: IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016 | en_US |
dc.description.abstract | We propose an efficient method for the high dimensional data regression. To this end, we use a least mean squares (LMS) filter followed by a recursive least squares (RLS) filter and combine them via boosting notion extensively used in machine learning literature. Moreover, we provide a novel approach where the RLS filter is updated randomly in order to reduce the computational complexity while not giving up more on the performance. In the proposed algorithm, after the LMS filter produces an estimate, depending on the error made on this step, the algorithm decides whether or not updating the RLS filter. Since we avoid updating the RLS filter for all data sequence, the computational complexity is significantly reduced. Error performance and the computation time of our algorithm is demonstrated for a highly realistic scenario. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T11:48:36Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1109/SIU.2016.7495933 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/37706 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2016.7495933 | en_US |
dc.source.title | Proceedings of the IEEE 24th Signal Processing and Communications Applications Conference, SIU 2016 | en_US |
dc.subject | Big data | en_US |
dc.subject | Boosting | en_US |
dc.subject | Linear filter | en_US |
dc.subject | LMS | en_US |
dc.subject | RLS | en_US |
dc.title | Big data signal processing using boosted RLS algorithm | en_US |
dc.title.alternative | Arttırmalı özyinelemeli en küçük karesel hata algoritması kullanarak büyük veri sinyal işlemesi | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Big data signal processing using boosted RLS algorithm [Arttirmali Özyinelemeli En Küçük Karesel Hata Algoritmasi Kullanarak Büyük Veri Sinyal Işlemesi].pdf
- Size:
- 565.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version