Designing, fabrication and post- fabrication characterization of half-frequency driven 16 x 16 waterborne transmit CMUT array

buir.advisorKöymen, Hayrettin
dc.contributor.authorAbhoo, Yusuph Abubakar
dc.date.accessioned2021-03-08T05:59:30Z
dc.date.available2021-03-08T05:59:30Z
dc.date.copyright2021-02
dc.date.issued2021-02
dc.date.submitted2021-03-04
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2021.en_US
dc.descriptionIncludes bibliographical references (leaves 64-67).en_US
dc.description.abstractCapacitive Micromachined Ultrasonic Transducers (CMUT) are micro-scaled electromechanical devices which are used to either transmit or receive pressure signals and applicable for various purposes such as ultrasonic sensor, medical imaging, accurate biometric sensing and parametric speakers. For transmitting CMUT transducer, different sizes and array configurations are used to intensify the transmission power depending on the application. The half-frequency driven waterborne transmitting CMUT array designed in this work is to be used for high resolution volumetric medical imaging purpose. This was accomplished by a design which prioritizes maximizing the power output, achieving a directive radiation pattern with low sidelobes which maximizes the beamformable region. In this work, the issues with steering of the focused beam are also resolved to achieve a focused steerable beam. This work is an advancement from the earlier designed half-frequency driven airborne transmit CMUT to improve power output, introduce the beamforming and focused transmission capabilities and be applicable for high resolution volumetric medical imaging purpose. To improve the power output, the design was made to compensate for the static depression. Compensating for static depression was achieved by designing to operate the CMUT without DC bias voltage which allows for full-gap swing and giving output signal of twice the input frequency. This property allows the cell to produce high power output with low voltage levels but also brings the advantage of operating the cell with very high voltages without collapsing. The CMUT was chosen to be operating at 7.5 MHz and be driven by Digital Phased Array System (DiPhAS) which allowed to have maximum of 256 channels which for volumetric transmission meant a maximum of 16 x 16 array. Since the radiation pattern and Rayleigh distance are both the functions of radius, frequency and the pitch, the design optimization was found while considering all the above preferences simultaneously. The cells’ radii were determined to be 80 µm, the plate thickness was 15 µm, the gap height was found to be 117 nm and the pitch was 192 µm. The array designing was carried out using the large-signal equivalent circuit model and the radiation impedance matrix phenomenon. The simulations showed that with this design, the maximized Rayleigh distance was 45.3 mm and the sidelobe of -17.4 dB. In simulations, very high pressure outputs were achievable with individual cells up to 425 kPa per cell with 150 VPP input while up to 1.5 MPa was emitted by the array plane wave transmission with only 10 VPP input and almost doubles when the transmitted beam was focused at zero degrees. Fabrication was done by the wafer boding and flip-chip bonding techniques where the whole process required only two lithography masks. After fabrication, the tests were performed to identify the yield of the transducer was 18.75% of the array then impedance analysis was done to characterize the functional cells and resonance frequency drift. The transducer was cased in a water-tight manner and the waterborne transmission were done with individual cells to characterize and compare the performance with the design simulations which were in the range of agreement achieving an average of 1625 Pa per cell. The functional cells were then used for plane wave transmission with 10 VPP and the output pressure of 397 kPa was achieved at resonance frequency. The measurement results showed that the design could further be improved by compensating the active area to improve the yield for better results and be able to use it for high resolution 3D medical imaging.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2021-03-08T05:59:30Z No. of bitstreams: 1 Yusuph Abhoo - Master's Thesis - Signed.pdf: 7682129 bytes, checksum: d1f32ec345879c8f3b9cc484d6af7e62 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-03-08T05:59:30Z (GMT). No. of bitstreams: 1 Yusuph Abhoo - Master's Thesis - Signed.pdf: 7682129 bytes, checksum: d1f32ec345879c8f3b9cc484d6af7e62 (MD5) Previous issue date: 2021-03-04en
dc.description.statementofresponsibilityby Yusuph Abubakar Abhooen_US
dc.format.extentxviii, 101 leaves : color illustrations, color charts, graphics ; 30 cm.en_US
dc.identifier.itemidB155399
dc.identifier.urihttp://hdl.handle.net/11693/75859
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCMUTen_US
dc.subjectArrayen_US
dc.subjectHalf frequency operationen_US
dc.subjectUnbiased mode operationen_US
dc.subjectRadiation impedanceen_US
dc.subjectWaterborne transmissionen_US
dc.subjectVolumetric imaging techniqueen_US
dc.subjectCMUT lumped-element equivalent circuiten_US
dc.subjectMicrofabricationen_US
dc.subjectMEMSen_US
dc.titleDesigning, fabrication and post- fabrication characterization of half-frequency driven 16 x 16 waterborne transmit CMUT arrayen_US
dc.title.alternativeYarı frekansta sürülen sualtı 16 x 16 elemanlı CMUT dizinin dizaynı, fabrikasyonu ve fabrikasyon sonrası karakterizasyonuen_US
dc.typeThesisen_US
thesis.degree.disciplineElectrical and Electronic Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yusuph Abhoo - Master's Thesis - Signed.pdf
Size:
7.33 MB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: