Signal representation and recovery under measurement constraints

buir.advisorÖzaktaş, Haldun M.
dc.contributor.authorÖzçelikkale Hünerli, Ayça
dc.date.accessioned2016-01-08T18:24:53Z
dc.date.available2016-01-08T18:24:53Z
dc.date.issued2012
dc.descriptionAnkara : The Department of Electrical and Electronics Engineering and the Graduate School of Engineering and Science of Bilkent University, 2012.en_US
dc.descriptionThesis (Ph. D.) -- Bilkent University, 2012.en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractWe are concerned with a family of signal representation and recovery problems under various measurement restrictions. We focus on finding performance bounds for these problems where the aim is to reconstruct a signal from its direct or indirect measurements. One of our main goals is to understand the effect of different forms of finiteness in the sampling process, such as finite number of samples or finite amplitude accuracy, on the recovery performance. In the first part of the thesis, we use a measurement device model in which each device has a cost that depends on the amplitude accuracy of the device: the cost of a measurement device is primarily determined by the number of amplitude levels that the device can reliably distinguish; devices with higher numbers of distinguishable levels have higher costs. We also assume that there is a limited cost budget so that it is not possible to make a high amplitude resolution measurement at every point. We investigate the optimal allocation of cost budget to the measurement devices so as to minimize estimation error. In contrast to common practice which often treats sampling and quantization separately, we have explicitly focused on the interplay between limited spatial resolution and limited amplitude accuracy. We show that in certain cases, sampling at rates different than the Nyquist rate is more efficient. We find the optimal sampling rates, and the resulting optimal error-cost trade-off curves. In the second part of the thesis, we formulate a set of measurement problems with the aim of reaching a better understanding of the relationship between geometry of statistical dependence in measurement space and total uncertainty of the signal. These problems are investigated in a mean-square error setting under the assumption of Gaussian signals. An important aspect of our formulation is our focus on the linear unitary transformation that relates the canonical signal domain and the measurement domain. We consider measurement set-ups in which a random or a fixed subset of the signal components in the measurement space are erased. We investigate the error performance, both We are concerned with a family of signal representation and recovery problems under various measurement restrictions. We focus on finding performance bounds for these problems where the aim is to reconstruct a signal from its direct or indirect measurements. One of our main goals is to understand the effect of different forms of finiteness in the sampling process, such as finite number of samples or finite amplitude accuracy, on the recovery performance. In the first part of the thesis, we use a measurement device model in which each device has a cost that depends on the amplitude accuracy of the device: the cost of a measurement device is primarily determined by the number of amplitude levels that the device can reliably distinguish; devices with higher numbers of distinguishable levels have higher costs. We also assume that there is a limited cost budget so that it is not possible to make a high amplitude resolution measurement at every point. We investigate the optimal allocation of cost budget to the measurement devices so as to minimize estimation error. In contrast to common practice which often treats sampling and quantization separately, we have explicitly focused on the interplay between limited spatial resolution and limited amplitude accuracy. We show that in certain cases, sampling at rates different than the Nyquist rate is more efficient. We find the optimal sampling rates, and the resulting optimal error-cost trade-off curves. In the second part of the thesis, we formulate a set of measurement problems with the aim of reaching a better understanding of the relationship between geometry of statistical dependence in measurement space and total uncertainty of the signal. These problems are investigated in a mean-square error setting under the assumption of Gaussian signals. An important aspect of our formulation is our focus on the linear unitary transformation that relates the canonical signal domain and the measurement domain. We consider measurement set-ups in which a random or a fixed subset of the signal components in the measurement space are erased. We investigate the error performance, both We are concerned with a family of signal representation and recovery problems under various measurement restrictions. We focus on finding performance bounds for these problems where the aim is to reconstruct a signal from its direct or indirect measurements. One of our main goals is to understand the effect of different forms of finiteness in the sampling process, such as finite number of samples or finite amplitude accuracy, on the recovery performance. In the first part of the thesis, we use a measurement device model in which each device has a cost that depends on the amplitude accuracy of the device: the cost of a measurement device is primarily determined by the number of amplitude levels that the device can reliably distinguish; devices with higher numbers of distinguishable levels have higher costs. We also assume that there is a limited cost budget so that it is not possible to make a high amplitude resolution measurement at every point. We investigate the optimal allocation of cost budget to the measurement devices so as to minimize estimation error. In contrast to common practice which often treats sampling and quantization separately, we have explicitly focused on the interplay between limited spatial resolution and limited amplitude accuracy. We show that in certain cases, sampling at rates different than the Nyquist rate is more efficient. We find the optimal sampling rates, and the resulting optimal error-cost trade-off curves. In the second part of the thesis, we formulate a set of measurement problems with the aim of reaching a better understanding of the relationship between geometry of statistical dependence in measurement space and total uncertainty of the signal. These problems are investigated in a mean-square error setting under the assumption of Gaussian signals. An important aspect of our formulation is our focus on the linear unitary transformation that relates the canonical signal domain and the measurement domain. We consider measurement set-ups in which a random or a fixed subset of the signal components in the measurement space are erased. We investigate the error performance, both in the average, and also in terms of guarantees that hold with high probability, as a function of system parameters. Our investigation also reveals a possible relationship between the concept of coherence of random fields as defined in optics, and the concept of coherence of bases as defined in compressive sensing, through the fractional Fourier transform. We also consider an extension of our discussions to stationary Gaussian sources. We find explicit expressions for the mean-square error for equidistant sampling, and comment on the decay of error introduced by using finite-length representations instead of infinite-length representations.en_US
dc.description.provenanceMade available in DSpace on 2016-01-08T18:24:53Z (GMT). No. of bitstreams: 1 0006511.pdf: 2674230 bytes, checksum: 57e078cb25c963d9edf05fb28057eb2d (MD5)en
dc.description.statementofresponsibilityÖzçelikkale Hünerli, Ayçaen_US
dc.format.extentxx, 280 leavesen_US
dc.identifier.urihttp://hdl.handle.net/11693/15806
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectinverse problemsen_US
dc.subjectestimationen_US
dc.subjectsignal representationen_US
dc.subjectsignal recoveryen_US
dc.subjectsamplingen_US
dc.subjectspatial resolutionen_US
dc.subjectamplitude resolutionen_US
dc.subjectcoherenceen_US
dc.subjectcompressive sensingen_US
dc.subjectdiscrete Fourier transform (DFT)en_US
dc.subjectfractional Fourier transformen_US
dc.subjectmixingen_US
dc.subjectwavepropagationen_US
dc.subjectoptical information processingen_US
dc.subject.lccQA370 .O931 2012en_US
dc.subject.lcshInverse problems (Differential equations)en_US
dc.subject.lcshSignal processing.en_US
dc.titleSignal representation and recovery under measurement constraintsen_US
dc.typeThesisen_US
thesis.degree.disciplineElectrical and Electronic Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelDoctoral
thesis.degree.namePh.D. (Doctor of Philosophy)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
0006511.pdf
Size:
2.55 MB
Format:
Adobe Portable Document Format