Local entanglement and string order parameter in dimerized models
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
In this letter, we propose an application of string order parameter (SOP), commonly used in quantum spin systems, to identify symmetry-protected topological phase (SPT) in fermionic systems in the example of the dimerized fermionic chain. As a generalized form of dimerized model, we consider a one-dimensional spin-1/2 XX model with alternating spin couplings. We employ Jordan–Wigner fermionization to map this model to the spinless Su–Schrieffer– Heeger fermionic model (SSH) with generalized hopping signs. We demonstrate a phase transition between a trivial insulating phase and the Haldane phase by the exact analytical evaluation of reconstructed SOPs which are represented as determinants of Toeplitz matrices with the given generating functions. To get more insight into the topological quantum phase transition (tQPT) and microscopic correlations, we study the pairwise concurrence as a local entanglement measure of the model. We show that the first derivative of the concurrence has a non-analytic behaviour in the vicinity of the tQPT, like in the second order trivial QPTs.