Maximally selective fractional fourier pooling

buir.contributor.authorKoç, Emirhan
buir.contributor.authorEkiz, Yunus Emre
buir.contributor.authorÖzaktaş, Haldun
buir.contributor.orcidKoç, Emirhan|0000-0002-7275-1570
buir.contributor.orcidKoç, Aykut|0000-0002-6348-2663
dc.contributor.authorKoç, Emirhan
dc.contributor.authorEkiz, Yunus Emre
dc.contributor.authorÖzaktaş, Haldun
dc.contributor.authorKoç, Aykut
dc.coverage.spatialTarsus Univ Campus, Mersin, TURKEY
dc.date.accessioned2025-02-22T20:23:27Z
dc.date.available2025-02-22T20:23:27Z
dc.date.issued2024-06-23
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionConference Name:2024 32nd Signal Processing and Communications Applications Conference (SIU)
dc.descriptionDate of Conference:15-18 May 2024
dc.description.abstractIn traditional image classification models, global average pooling is typically employed in the final layer to mitigate model complexity. However, this approach is prone to loss of information while reducing the complexity. Recent studies have proposed alternatives, replacing this layer by propagating information in various domains. In our work, we propose replacing this conventional pooling layer with a fractional Fourier transform (FrFT) based pooling layer. We first transform the feature of the last convolutional layer to the FrFT domain and transfer only the k-largest coefficients to the following layer in each channel, thereby enhancing efficiency by preserving only the essential information. To support our proposal, we conducted experiments on two datasets using various image classification models. Our results show that the integration of the FrFT as a pooling layer not only improves model performances but also does not add significant computational burden to model complexity.
dc.description.provenanceSubmitted by Aleyna Demirkıran (aleynademirkiran@bilkent.edu.tr) on 2025-02-22T20:23:27Z No. of bitstreams: 1 Maximally_Selective_Fractional_Fourier_Pooling.pdf: 322318 bytes, checksum: b0656ba9773ff5f77d797bce411de36f (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-22T20:23:27Z (GMT). No. of bitstreams: 1 Maximally_Selective_Fractional_Fourier_Pooling.pdf: 322318 bytes, checksum: b0656ba9773ff5f77d797bce411de36f (MD5) Previous issue date: 2024-06-23en
dc.identifier.doi10.1109/SIU61531.2024.10600916
dc.identifier.isbn979-8-3503-8896-1
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/11693/116661
dc.language.isoTurkish
dc.publisherIEEE
dc.relation.isversionofhttps://dx.doi.org/10.1109/SIU61531.2024.10600916
dc.subjectFractional Fourier transform
dc.subjectGlobal average pooling
dc.subjectImage classification
dc.subjectDeep neural network smachine learning
dc.titleMaximally selective fractional fourier pooling
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Maximally_Selective_Fractional_Fourier_Pooling.pdf
Size:
314.76 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: