Deep convolutional generative adversarial networks for flame detection in video
buir.contributor.author | Aslan, Süleyman | |
buir.contributor.author | Güdükbay, Uğur | |
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 815 | en_US |
dc.citation.spage | 807 | en_US |
dc.citation.volumeNumber | 12496 LNAI | en_US |
dc.contributor.author | Aslan, Süleyman | en_US |
dc.contributor.author | Güdükbay, Uğur | en_US |
dc.contributor.author | Töreyin, B. U. | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.coverage.spatial | Da Nang, Vietnam | en_US |
dc.date.accessioned | 2021-02-05T13:21:09Z | |
dc.date.available | 2021-02-05T13:21:09Z | |
dc.date.issued | 2020 | |
dc.department | Department of Computer Engineering | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 30 November - 3 December 2020 | en_US |
dc.description | Conference name: 12th International Conference on Computational Collective Intelligence, ICCCI 2020 | en_US |
dc.description.abstract | Real-time flame detection is crucial in video-based surveillance systems. We propose a vision-based method to detect flames using Deep Convolutional Generative Adversarial Neural Networks (DCGANs). Many existing supervised learning approaches using convolutional neural networks do not take temporal information into account and require a substantial amount of labeled data. To have a robust representation of sequences with and without flame, we propose a two-stage training of a DCGAN exploiting spatio-temporal flame evolution. Our training framework includes the regular training of a DCGAN with real spatio-temporal images, namely, temporal slice images, and noise vectors, and training the discriminator separately using the temporal flame images without the generator. Experimental results show that the proposed method effectively detects flame in video with negligible false-positive rates in real-time. | en_US |
dc.description.provenance | Submitted by Onur Emek (onur.emek@bilkent.edu.tr) on 2021-02-05T13:21:09Z No. of bitstreams: 1 Deep_Convolutional_Generative_Adversarial_Networks_for_Flame_Detection_in_Video.pdf: 1655268 bytes, checksum: a9c07d96e2adf2635d5762630db8c25b (MD5) | en |
dc.description.provenance | Made available in DSpace on 2021-02-05T13:21:09Z (GMT). No. of bitstreams: 1 Deep_Convolutional_Generative_Adversarial_Networks_for_Flame_Detection_in_Video.pdf: 1655268 bytes, checksum: a9c07d96e2adf2635d5762630db8c25b (MD5) Previous issue date: 2020 | en |
dc.description.sponsorship | A. Enis Çetin’s research is partially funded by NSF with grant number 1739396 and NVIDIA Corporation. B. Uğur Töreyin’s research is partially funded by TÜBİTAK 114E426, İTÜ BAP MGA-2017-40964 and MOA-2019-42321. | en_US |
dc.identifier.doi | 10.1007/978-3-030-63007-2_63 | en_US |
dc.identifier.isbn | 9783030630065 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/55013 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Springer, Cham | en_US |
dc.relation.ispartofseries | Lecture Notes in Computer Science;LNCS 12496 | |
dc.relation.isversionof | https://doi.org/10.1007/978-3-030-63007-2_63 | en_US |
dc.source.title | Computational Collective Intelligence: 12th International Conference, ICCCI 2020 | en_US |
dc.subject | Fire detection | en_US |
dc.subject | Flame detection | en_US |
dc.subject | Deep convolutional generative adversarial neural network | en_US |
dc.title | Deep convolutional generative adversarial networks for flame detection in video | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Deep_Convolutional_Generative_Adversarial_Networks_for_Flame_Detection_in_Video.pdf
- Size:
- 1.55 MB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: