Automatic rule learning exploiting morphological features for named entity recognition in Turkish

dc.citation.epage151en_US
dc.citation.issueNumber2en_US
dc.citation.spage137en_US
dc.citation.volumeNumber37en_US
dc.contributor.authorTatar, S.en_US
dc.contributor.authorCicekli I.en_US
dc.date.accessioned2016-02-08T09:53:51Z
dc.date.available2016-02-08T09:53:51Z
dc.date.issued2011en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractNamed entity recognition (NER) is one of the basic tasks in automatic extraction of information from natural language texts. In this paper, we describe an automatic rule learning method that exploits different features of the input text to identify the named entities located in the natural language texts. Moreover, we explore the use of morphological features for extracting named entities from Turkish texts. We believe that the developed system can also be used for other agglutinative languages. The paper also provides a comprehensive overview of the field by reviewing the NER research literature. We conducted our experiments on the TurkIE dataset, a corpus of articles collected from different Turkish newspapers. Our method achieved an average F-score of 91.08% on the dataset. The results of the comparative experiments demonstrate that the developed technique is successfully applicable to the task of automatic NER and exploiting morphological features can significantly improve the NER from Turkish, an agglutinative language. © The Author(s) 2011.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T09:53:51Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2011en
dc.identifier.doi10.1177/0165551511398573en_US
dc.identifier.issn1655515en_US
dc.identifier.urihttp://hdl.handle.net/11693/21980en_US
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1177/0165551511398573en_US
dc.source.titleJournal of Information Scienceen_US
dc.subjectautomatic rule learningen_US
dc.subjectmorphological featuresen_US
dc.subjectnamed entity recognitionen_US
dc.subjectTurkishen_US
dc.subjectAgglutinative languageen_US
dc.subjectAutomatic extractionen_US
dc.subjectComparative experimentsen_US
dc.subjectData setsen_US
dc.subjectF-scoreen_US
dc.subjectmorphological featuresen_US
dc.subjectNamed entitiesen_US
dc.subjectnamed entity recognitionen_US
dc.subjectNatural language texten_US
dc.subjectRule learningen_US
dc.subjectTurkishen_US
dc.subjectTurkish textsen_US
dc.subjectTurkishsen_US
dc.subjectExperimentsen_US
dc.subjectNatural language processing systemsen_US
dc.subjectQuery languagesen_US
dc.subjectFeature extractionen_US
dc.titleAutomatic rule learning exploiting morphological features for named entity recognition in Turkishen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Automatic rule learning exploiting morphological features for named entity recognition in Turkish.pdf
Size:
981.72 KB
Format:
Adobe Portable Document Format
Description:
Full printable version