Atomic scale investigation of clean and epi-grown Si(001) surfaces using scanning tunneling microscopy

Date
1996
Advisor
Ellialtıoğlu, Recai
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Bilkent University
Volume
Issue
Pages
Language
English
Type
Thesis
Journal Title
Journal ISSN
Volume Title
Series
Abstract

In this thesis, clean and epi-grown Si(001)(2x1)surfaces are analyzed by Scanning Tunneling Microscopy (STM). The STM and Ultra High Vacuum System (UHV) in which the microscope is installed, are described. A brief history of the studies on the reconstruction and fundamental features of the Si(001) surface is also given. First, the sample and tip preparation techniques were optimized. Sample preparation method, which includes both ex situ chemical and in situ heating cleaning procedures, was found not to give routinely the clean and atomically flat surfaces, because of the criticality of the temperature values used during heat treatments. The monoatomic steps, dimer rows, defects such as missing dimer and dimer groups, were observed on clean Si(001) surfaces. Double height step formation due to contamination was also detected on a few samples. Buckling of dimers, which is believed to be due mainly to either the high defect density or tip-surface interaction, was observed on one sample. Si and Ge were grown epitaxially on the silicon substrate, with 0.11 ML and 3.2 ML coverages, respectively. The Si growth on Si(001) was found to occur as island formation because of the low substrate temperature (ca. 300 degrees C). Strong shape anisotropy and diffusional anistropy in the growth have been observed. On the other hand, the large coverage of Ge on Si(001) at a relatively high substrate temperature (ca. 500 degrees C) resulted in step flow growth rather than individual island formation on the terraces.

Course
Other identifiers
Book Title
Keywords
Scanning 'runneling Microscope, Ultra High Vacuum, Si(001)(‘2 x i ) reconstruction, Epitaxial growth
Citation
Published Version (Please cite this version)