Universal nonlinear regression on high dimensional data using adaptive hierarchical trees

dc.citation.epage188en_US
dc.citation.issueNumber2en_US
dc.citation.spage175en_US
dc.citation.volumeNumber2en_US
dc.contributor.authorKhan, F.en_US
dc.contributor.authorKari, D.en_US
dc.contributor.authorKaratepe, I. A.en_US
dc.contributor.authorKozat, S. S.en_US
dc.date.accessioned2019-02-13T15:52:56Z
dc.date.available2019-02-13T15:52:56Z
dc.date.issued2016en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.description.abstractWe study online sequential regression with nonlinearity and time varying statistical distribution when the regressors lie in a high dimensional space. We escape the curse of dimensionality by tracking the subspace of the underlying manifold using a hierarchical tree structure. We use the projections of the original high dimensional regressor space onto the underlying manifold as the modified regressor vectors for modeling of the nonlinear system. By using the proposed algorithm, we reduce the computational complexity to the order of the depth of the tree and the memory requirement to only linear in the intrinsic dimension of the manifold. The proposed techniques are specifically applicable to high dimensional streaming data analysis in a time varying environment. We demonstrate the significant performance gains in terms of mean square error over the other state of the art techniques through simulated as well as real data.en_US
dc.description.provenanceSubmitted by Şelale Korkut (selale@bilkent.edu.tr) on 2019-02-13T15:52:56Z No. of bitstreams: 1 Universal_Nonlinear_Regression_on_High_Dimensional_Data_Using_Adaptive_Hierarchical_Trees.pdf: 1036908 bytes, checksum: 456878d6cbfec06499d3b2e6f65ea32b (MD5)en
dc.description.provenanceMade available in DSpace on 2019-02-13T15:52:56Z (GMT). No. of bitstreams: 1 Universal_Nonlinear_Regression_on_High_Dimensional_Data_Using_Adaptive_Hierarchical_Trees.pdf: 1036908 bytes, checksum: 456878d6cbfec06499d3b2e6f65ea32b (MD5) Previous issue date: 2016en
dc.identifier.doi10.1109/TBDATA.2016.2555323en_US
dc.identifier.issn2332-7790
dc.identifier.urihttp://hdl.handle.net/11693/49466
dc.language.isoEnglishen_US
dc.publisherInstitute of Electrical and Electronics Engineersen_US
dc.relation.isversionofhttps://doi.org/10.1109/TBDATA.2016.2555323en_US
dc.source.titleIEEE Transactions on Big Dataen_US
dc.subjectBig dataen_US
dc.subjectRegression on high dimensional manifoldsen_US
dc.subjectOnline learningen_US
dc.subjectTree based methodsen_US
dc.titleUniversal nonlinear regression on high dimensional data using adaptive hierarchical treesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Universal_Nonlinear_Regression_on_High_Dimensional_Data_Using_Adaptive_Hierarchical_Trees.pdf
Size:
1012.61 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: