Robotic task planning using a backchaining theorem prover for multiplicative exponential first-order linear logic

buir.contributor.authorKortik, Sitar
dc.citation.epage191en_US
dc.citation.issueNumber2en_US
dc.citation.spage179en_US
dc.citation.volumeNumber96en_US
dc.contributor.authorKortik, Sitaren_US
dc.contributor.authorSaranlı, U.en_US
dc.date.accessioned2020-01-31T13:51:19Z
dc.date.available2020-01-31T13:51:19Z
dc.date.issued2019
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractIn this paper, we propose an exponential multiplicative fragment of linear logic to encode and solve planning problems efficiently in STRIPS domain, that we call the Linear Planning Logic (LPL). Linear logic is a resource aware logic treating resources as single use assumptions, therefore enabling encoding and reasoning of domains with dynamic state. One of the most important examples of dynamic state domains is robotic task planning, since informational or physical states of a robot include non-monotonic characteristics. Our novel theorem prover is using the backchaining method which is suitable for logic languages like Lolli and Prolog. Additionally, we extend LPL to be able to encode non-atomic conclusions in program formulae. Following the introduction of the language, our theorem prover and its implementation, we present associated algorithmic properties through small but informative examples. Subsequently, we also present a navigation domain using the hexapod robot RHex to show LPL’s operation on a real robotic planning problem. Finally, we provide comparisons of LPL with two existing linear logic theorem provers, llprover and linTAP. We show that LPL outperforms these theorem provers for planning domains.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-01-31T13:51:19Z No. of bitstreams: 1 Robotic_task_planning_using_a_backchaining_theorem_prover_for_multiplicative_exponential_first_order_linear_logic.pdf: 1354054 bytes, checksum: 765dd31c9e4c777620c7bb0df92ba47d (MD5)en
dc.description.provenanceMade available in DSpace on 2020-01-31T13:51:19Z (GMT). No. of bitstreams: 1 Robotic_task_planning_using_a_backchaining_theorem_prover_for_multiplicative_exponential_first_order_linear_logic.pdf: 1354054 bytes, checksum: 765dd31c9e4c777620c7bb0df92ba47d (MD5) Previous issue date: 2019en
dc.identifier.doi10.1007/s10846-018-0971-9en_US
dc.identifier.issn0921-0296en_US
dc.identifier.urihttp://hdl.handle.net/11693/52961en_US
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s10846-018-0971-9en_US
dc.source.titleJournal of Intelligent and Robotic Systems: Theory and Applicationsen_US
dc.subjectRobotic task planningen_US
dc.subjectLinear logicen_US
dc.subjectAutomated theorem provingen_US
dc.subjectVisual navigationen_US
dc.subjectBackchainingen_US
dc.subjectRHex hexapoden_US
dc.titleRobotic task planning using a backchaining theorem prover for multiplicative exponential first-order linear logicen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Robotic_task_planning_using_a_backchaining_theorem_prover_for_multiplicative_exponential_first_order_linear_logic.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: