Towards understanding personality expression via body motion

buir.contributor.authorSonlu, Sinan
buir.contributor.authorDogan, Yalim
buir.contributor.authorErguzen, Arcin Ulku
buir.contributor.authorUnalan, Musa Ege
buir.contributor.authorGudukbay, Ugur
buir.contributor.orcidDogan, Yalim|0000-0002-0814-2439
buir.contributor.orcidErguzen, Arcin Ulku|0009-0007-4755-8617
buir.contributor.orcidDemirci, Serkan|0000-0002-4753-2069
dc.citation.epage631
dc.citation.spage628
dc.contributor.authorSonlu, Sinan
dc.contributor.authorDogan, Yalim
dc.contributor.authorErguzen, Arcin Ulku
dc.contributor.authorUnalan, Musa Ege
dc.contributor.authorDemirci, Serkan
dc.contributor.authorDurupinar, Funda
dc.contributor.authorGudukbay, Ugur
dc.coverage.spatialOrlando, FL
dc.date.accessioned2025-02-21T13:55:01Z
dc.date.available2025-02-21T13:55:01Z
dc.date.issued2024-05-29
dc.departmentDepartment of Mechanical Engineering
dc.descriptionConference Name:2024 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
dc.descriptionDate of Conference:16-21 March 2024
dc.description.abstractThis work addresses the challenge of data scarcity in personality-labeled datasets by introducing personality labels to clips from two open datasets, ZeroEGGS and Bandai, which provide diverse full-body animations. To this end, we present a user study to annotate short clips from both sets with labels based on the Five-Factor Model (FFM) of personality. We chose features informed by Laban Movement Analysis (LMA) to represent each animation. These features then guided us to select the samples of distinct motion styles to be included in the user study, obtaining high personality variance and keeping the study duration and cost viable. Using the labeled data, we then ran a correlation analysis to find features that indicate high correlation with each personality dimension. Our regression analysis results indicate that highly correlated features are promising in accurate personality estimation. We share our early findings, code, and data publicly.
dc.description.provenanceSubmitted by Aleyna Demirkıran (aleynademirkiran@bilkent.edu.tr) on 2025-02-21T13:55:01Z No. of bitstreams: 1 Towards_Understanding_Personality_Expression_via_Body_Motion.pdf: 674789 bytes, checksum: 9058688203406acd2d0616f11c31e33a (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-21T13:55:01Z (GMT). No. of bitstreams: 1 Towards_Understanding_Personality_Expression_via_Body_Motion.pdf: 674789 bytes, checksum: 9058688203406acd2d0616f11c31e33a (MD5) Previous issue date: 2024-05-29en
dc.identifier.doi10.1109/VRW62533.2024.00123
dc.identifier.isbn979-8-3503-7449-0
dc.identifier.urihttps://hdl.handle.net/11693/116588
dc.language.isoEnglish
dc.relation.isversionofhttps://dx.doi.org/10.1109/VRW62533.2024.00123
dc.subjectComputing methodologies
dc.subjectArtificial intelligence
dc.subjectKeywords Author KeywordsComputing methodologiesArtificial intelligenceComputer vision
dc.subjectActivity recognition and understanding
dc.subjectMotion processing
dc.subjectComputer graphics
dc.subjectAnimation
dc.titleTowards understanding personality expression via body motion
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Towards_Understanding_Personality_Expression_via_Body_Motion.pdf
Size:
658.97 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: