The effect of distribution of information on recovery of propagating signals

Available
The embargo period has ended, and this item is now available.

Date

2015-09

Editor(s)

Advisor

Özaktaş, Haldun M.

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
5
views
12
downloads

Series

Abstract

Interpolation is one of the fundamental concepts in signal processing. The analysis of the di fficulty of interpolation of propagating waves is the subject of this thesis. It is known that the information contained in a propagating wave fi eld can be fully described by its uniform samples taken on a planar surface transversal to the propagation direction, so the eld can be found anywhere in space by using the wave propagation equations. However in some cases, the sample locations may be irregular and/or nonuniform. We are concerned with interpolation from such samples. To be able to reduce the problem to a pure mathematical form, the fractional Fourier transform is used thanks to the direct analogy between wave propagation and fractional Fourier transformation. The linear relationship between each sample and the unknown field distribution is established this way. These relationships, which constitute a signal recovery problem based on multiple partial fractional Fourier transform information, are analyzed. Recoverability of the fi eld is examined by comparing the condition numbers of the constructed matrices corresponding to di fferent distributions of the available samples.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Electrical and Electronic Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type