The spectral theorem for locally normal operators

buir.contributor.authorGheondea, Aurelian
dc.citation.epage621en_US
dc.citation.issueNumber5en_US
dc.citation.spage597en_US
dc.citation.volumeNumber38en_US
dc.contributor.authorGheondea, Aurelianen_US
dc.date.accessioned2019-02-21T16:09:28Z
dc.date.available2019-02-21T16:09:28Z
dc.date.issued2018en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe prove the spectral theorem for locally normal operators in terms of a locally spectral measure. In order to do this, we first obtain some characterisations of local projections and we single out and investigate the concept of a locally spectral measure.
dc.description.provenanceMade available in DSpace on 2019-02-21T16:09:28Z (GMT). No. of bitstreams: 1 Bilkent-research-paper.pdf: 222869 bytes, checksum: 842af2b9bd649e7f548593affdbafbb3 (MD5) Previous issue date: 2018en
dc.description.sponsorshipWork supported by the grant PN-III-P4-PCE-2016-0823 Dynamics and Differentiable Ergodic Theory from UEFISCDI, Romania.
dc.identifier.doi10.7494/OpMath.2018.38.5.597
dc.identifier.issn1232-9274
dc.identifier.urihttp://hdl.handle.net/11693/50462
dc.language.isoEnglish
dc.publisherAGH University of Science and Technology
dc.relation.isversionofhttps://doi.org/10.7494/OpMath.2018.38.5.597
dc.relation.projectUnitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii, UEFISCDI
dc.rightsinfo:eu-repo/semantics/openAccess
dc.source.titleOpuscula Mathematicaen_US
dc.subjectLocal projectionen_US
dc.subjectLocally C∗-algebraen_US
dc.subjectLocally Hilbert spaceen_US
dc.subjectLocally normal operatoren_US
dc.subjectLocally spectral measureen_US
dc.titleThe spectral theorem for locally normal operatorsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The_spectral_theorem_for_locally_normal_operators.pdf
Size:
496.62 KB
Format:
Adobe Portable Document Format
Description:
Full printable version