Timely monitoring of Markov chains under sampling rate constraints

buir.contributor.authorAkar, Nail
buir.contributor.orcidAkar,Nail|0000-0001-8143-1379
dc.citation.epage194
dc.citation.spage189
dc.contributor.authorAkar, Nail
dc.contributor.authorUlukus, Sennur
dc.coverage.spatialDenver, CO, USA
dc.date.accessioned2025-02-17T11:10:51Z
dc.date.available2025-02-17T11:10:51Z
dc.date.issued2024
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionDate of Conference: 09-13 June 2024
dc.descriptionConference Name: 59th Annual IEEE International Conference on Communications, ICC 2024
dc.description.abstractWe study a pull-based monitoring system in which a common remote monitor queries the states of a collection of heterogeneous finite-state irreducible continuous time Markov chain (CTMC) based information sources, according to a Poisson process with different per-source sampling rates, in order to maintain remote estimates of the states. Three information freshness models are considered to quantify the accuracy of the remote estimates: fresh when equal (FWE), fresh when sampled (FWS) and fresh when close (FWC). For each of these freshness models, closed-form expressions are derived for mean information freshness for each source, as a function of the sampling rate. Using these expressions, optimum sampling rates for all sources are obtained using water-filling based optimization for maximizing the weighted sum freshness of the monitoring system, under an overall sampling rate constraint. Numerical examples are presented to validate the effectiveness of the proposed method by comparing it to several baseline sampling policies.
dc.description.provenanceSubmitted by İsmail Akdağ (ismail.akdag@bilkent.edu.tr) on 2025-02-17T11:10:51Z No. of bitstreams: 1 Timely_Monitoring_of_Markov_Chains_Under_Sampling_Rate_Constraints.pdf: 530184 bytes, checksum: e3c81abf8794de0ac0686eef6e84f3b4 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-17T11:10:51Z (GMT). No. of bitstreams: 1 Timely_Monitoring_of_Markov_Chains_Under_Sampling_Rate_Constraints.pdf: 530184 bytes, checksum: e3c81abf8794de0ac0686eef6e84f3b4 (MD5) Previous issue date: 2024en
dc.identifier.doi10.1109/ICC51166.2024.10622215
dc.identifier.eisbn978-1-7281-9054-9
dc.identifier.eissn1938-1883
dc.identifier.isbn978-1-7281-9055-6
dc.identifier.issn1550-3607
dc.identifier.urihttps://hdl.handle.net/11693/116312
dc.language.isoEnglish
dc.publisherIEEE
dc.relation.isversionofhttps://dx.doi.org/10.1109/ICC51166.2024.10622215
dc.source.titleICC 2024 - IEEE International Conference on Communications
dc.subjectClosed-form solutions
dc.subjectAccuracy
dc.subjectComputational modeling
dc.subjectNumerical models
dc.subjectComputational complexity
dc.subjectMonitoring
dc.subjectOptimization
dc.titleTimely monitoring of Markov chains under sampling rate constraints
dc.typeConference Paper

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Timely_Monitoring_of_Markov_Chains_Under_Sampling_Rate_Constraints.pdf
Size:
517.76 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: