Utilizing embedded ultra-small Pt nanoparticles as charge trapping layer in flashristor memory cells

Available
The embargo period has ended, and this item is now available.

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Applied Surface Science

Print ISSN

0169-4332

Electronic ISSN

Publisher

Elsevier

Volume

467-468

Issue

Pages

715 - 722

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
12
downloads

Series

Abstract

In this study, a methodology for producing highly controlled and uniformly dispersed metal nanoparticles were developed by atomic layer deposition (ALD) technique. All-ALD grown thin film flash memory (TFFM) cells and their applications were demonstrated with ultra-small platinum nanoparticles (Pt-NPs) as charge trapping layer and control tunnel oxide layer. The ultra-small Pt-NPs possessed sizes ranging from 2.3 to 2.6 nm and particle densities of about 2.5 × 1013 cm–b. The effect of Pt-NPs embedded on the storage layer for charging was investigated. The charging effect of ultra-small Pt-NPs the storage layer was observed using the electrical characteristics of TFFM. The Pt-NPs were observed by a high-resolution scanning electron microscopy (HR-SEM). The memory effect was manifested by hysteresis in the IDS-VDS and IDS-VGS curves. The charge storage capacity of the TFFM cells demonstrated that ALD-grown Pt-NPs in conjunction with ZnO layer can be considered as a promising candidate for memory devices. Moreover, ZnO TFFM showed a ION/IOFF ratio of up to 52 orders of magnitude and its threshold voltage (Vth) was approximately −4.1 V using Ids−a/b – Vgs curve. Fabricated TFFMs exhibited clear pinch-off and show n-type field effect transistor (FET) behavior. The role of atomic-scale controlled Pt-NPs for improvement of devices were also discussed and they indicated that ALD-grown Pt-NPs can be utilized in nanoscale electronic devices as alternative quantum dot structures.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)