Strong stabilization of MIMO systems with restricted zeros in the unstable region

Date

2008-12

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Proceedings of the IEEE Conference on Decision and Control

Print ISSN

Electronic ISSN

Publisher

IEEE

Volume

Issue

Pages

2220 - 2225

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
3
views
26
downloads

Series

Abstract

The strong stabilization problem (i.e., stabilization by a stable feedback controller) is considered for a class of finite dimensional linear, time-invariant, multi-input multioutput plants. It is assumed that the plant satisfies the parity interlacing property, which is a necessary condition for the existence of strongly stabilizing controllers. Furthermore, the plant class under consideration has no restrictions on the poles, on the zeros in the open left-half complex plane, on the zeros at the origin or at infinity; but only one finite positive real zero is allowed. A systematic strongly stabilizing controller design procedure is proposed that applies to any plant in the class, whereas alternative approaches may work for larger class of plants but only under certain sufficient conditions. The freedom available in the design parameters may be used for additional performance objectives although the only goal here is strong stabilization. In the special case of single-input single-output plants in the class considered, the proposed stable controllers have order one less than the order of the plant. © 2008 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)