Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emission

buir.contributor.authorOkyay, Ali Kemal
dc.citation.epage013112-4en_US
dc.citation.spage013112-1en_US
dc.citation.volumeNumber104en_US
dc.contributor.authorEl-Atab, N.en_US
dc.contributor.authorOzcan, A.en_US
dc.contributor.authorAlkis, S.en_US
dc.contributor.authorOkyay, Ali Kemalen_US
dc.contributor.authorNayfeh, A.en_US
dc.date.accessioned2016-02-08T10:58:59Z
dc.date.available2016-02-08T10:58:59Z
dc.date.issued2014en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.departmentNanotechnology Research Center (NANOTAM)en_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractA low power zinc-oxide (ZnO) charge trapping memory with embedded silicon (Si) nanoparticles is demonstrated. The charge trapping layer is formed by spin coating 2 nm silicon nanoparticles between Atomic Layer Deposited ZnO steps. The threshold voltage shift (ΔVt) vs. programming voltage is studied with and without the silicon nanoparticles. Applying -1 V for 5 s at the gate of the memory with nanoparticles results in a ΔVt of 3.4 V, and the memory window can be up to 8 V with an excellent retention characteristic (>10 yr). Without nanoparticles, at -1 V programming voltage, the ΔVt is negligible. In order to get ΔVt of 3.4 V without nanoparticles, programming voltage in excess of 10 V is required. The negative voltage on the gate programs the memory indicating that holes are being trapped in the charge trapping layer. In addition, at 1 V the electric field across the 3.6 nm tunnel oxide is calculated to be 0.36 MV/cm, which is too small for significant tunneling. Moreover, the ΔVt vs. electric field across the tunnel oxide shows square root dependence at low fields (E 1 MV/cm) and a square dependence at higher fields (E > 2.7 MV/cm). This indicates that Poole-Frenkel Effect is the main mechanism for holes emission at low fields and Phonon Assisted Tunneling at higher fields. © 2014 AIP Publishing LLC.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:58:59Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014en
dc.identifier.doi10.1063/1.4861590en_US
dc.identifier.issn0003-6951
dc.identifier.urihttp://hdl.handle.net/11693/26376
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1063/1.4861590en_US
dc.source.titleApplied Physics Lettersen_US
dc.subjectAtomic layer depositeden_US
dc.subjectCharge trapping layersen_US
dc.subjectCharge trapping memoryen_US
dc.subjectPhonon assisted tunnelingen_US
dc.subjectRetention characteristicsen_US
dc.subjectSilicon nanoparticlesen_US
dc.subjectSquare-root dependenceen_US
dc.subjectThreshold voltage shiftsen_US
dc.subjectAtomic layer depositionen_US
dc.subjectCharge trappingen_US
dc.subjectElectric fieldsen_US
dc.subjectSiliconen_US
dc.subjectZincen_US
dc.subjectZinc oxideen_US
dc.subjectNanoparticlesen_US
dc.titleLow power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via poole-frenkel hole emissionen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Low power zinc-oxide based charge trapping memory with embedded silicon nanoparticles via Poole-Frenkel hole emission.pdf
Size:
1.18 MB
Format:
Adobe Portable Document Format
Description:
Full printable version