Plasmonic nanoparticles by laser dewetting of thin metallic films

Date

2013

Editor(s)

Advisor

Aydınlı, Atilla

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
15
downloads

Series

Abstract

In this work, formation of metal nanoparticles via laser induced dewetting and their plasmonic properties have been investigated. The effects of metal film, substrate type, laser power density and dwell time on dewetting phenomenon were analyzed. Silver and gold thin films were fabricated with thermal evaporation on various substrates. Next, they were characterized by the ellipsometry, UV-VIS spectroscopy and atomic force microscopy (AFM) as the characteristic of the thin film affects dewetting. Samples were then processed by a cw argon laser. Varying the dwell time and power density, Ag and Au nanoparticles with different morphology were obtained. At the final stages of dewetting, nanoparticles attained spherical shapes. Particle size distribution and length scale analysis were performed using the images obtained from scanning electron microscope (SEM). Using these results, relations between the average particle size and film thickness, as well as the relation between length scale and film thickness were obtained to verify the occurrence of dewetting. Substrate and film type were observed to affect the particle morphology and particle size. Moreover, plasmonic resonance effect of Ag and Au nanoparticles were observed via the optical absorbance measurements. Multilayered metallic nanoparticles and embedded nanoparticles were fabricated and were found to display plasmonic properties.

Source Title

Publisher

Course

Other identifiers

Book Title

Degree Discipline

Physics

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)

Language

English

Type