Slopes and concordance of links
buir.contributor.author | Degtyarev, Alex | |
dc.citation.epage | 1120 | |
dc.citation.issueNumber | 2 | |
dc.citation.spage | 1101 | |
dc.citation.volumeNumber | 24 | |
dc.contributor.author | Degtyarev, Alex | |
dc.contributor.author | Florens, V. | |
dc.contributor.author | Lecuona, A. G. | |
dc.date.accessioned | 2025-02-18T10:35:21Z | |
dc.date.available | 2025-02-18T10:35:21Z | |
dc.date.issued | 2024-04-12 | |
dc.department | Department of Mathematics | |
dc.description.abstract | The slope is an isotopy invariant of colored links with a distinguished component, initially introducedby the authors to describe an extra correction term in the computation of the signature of the splice. Itappeared to be closely related to several classical invariants, such as the Conway potential function or theKojima –function (defined for two-components links). We prove that the slope is invariant under coloredconcordance of links. Besides, we present a formula to compute the slope in terms of C –complexes andgeneralized Seifert forms. | |
dc.description.provenance | Submitted by Civanmert Şevluğ (civanmert.sevlug@bilkent.edu.tr) on 2025-02-18T10:35:21Z No. of bitstreams: 1 Slopes_and_concordance_of_links.pdf: 609468 bytes, checksum: b708fb91ce281434e860428089bff5dc (MD5) | en |
dc.description.provenance | Made available in DSpace on 2025-02-18T10:35:21Z (GMT). No. of bitstreams: 1 Slopes_and_concordance_of_links.pdf: 609468 bytes, checksum: b708fb91ce281434e860428089bff5dc (MD5) Previous issue date: 2024-04-12 | en |
dc.identifier.doi | 10.2140/agt.2024.24.1101 | |
dc.identifier.issn | 1472-2739 | |
dc.identifier.uri | https://hdl.handle.net/11693/116364 | |
dc.language.iso | English | |
dc.publisher | Mathematical Sciences Publishers | |
dc.relation.isversionof | https://dx.doi.org/10.2140/agt.2024.24.1101 | |
dc.source.title | Algebraic & Geometric Topology | |
dc.title | Slopes and concordance of links | |
dc.type | Article |